

1. Rings

Recap of Abelian Group

Definition, Abelian, Groups An Abelian (commutative) group R is a set with a binary operation. $+ R \times R \rightarrow R$ $(a,b) \mapsto a+b$ such that (0) a+b=b+a ∀a,beR (1) a + (b+c) = (a+b) + c(2) $\exists 0 \in \mathbb{R}$ s.t $0 \neq a = a \neq 0 \quad \forall a \in \mathbb{R}$ (3) $\forall a \in R, \exists (-a) \in R \ s \cdot t \ a + (-a) = (-a) + a = 0$ Notation: We write a+(-b) = a-b Definition of a ring Definition, Ring A ring R is a set with 2 binary operations addition multiplication $R \times R \rightarrow R;$ $R \times R \rightarrow R;$ $(a,b) \mapsto a+b$ (a,b) → axb satisfying following axioms i) (R,+) is an Abelian group ii) $(axb)xc = ax(bxc) \forall a, b, c \in R$ iii) $a x(b+c) = a x b + a x c \quad \forall a, b, c \in R$ $(a+b)xc = axc + bxc \quad \forall a, b, c \in \mathbb{R}$

Notation,: axb is represented by ab

Basic Example of a Ring

1) Proposition, Z is a ring

<u>Proof:</u>

 $\blacktriangleright \mathbb{Z}$ is closed under binary operations + (addition) and x (multiplication)

ii)∀a,b,c∈Z,

(axb)xc = (ab)xc = abc

$$= a x(bc) = a x(b x c)$$

iii)∀a,b,c∈Z

a(b+c) = ab+ac

<u>Remark</u>:

i) In the definition of a ring, we do not assume existence of a multiplicative inverse a"

ii) We do not assume existence of multiplicative identity

Ex: $2 \in \mathbb{Z}$, $2 \notin \mathbb{Z}$ eventhough 2 = 1 = e

In \mathbb{Z} , $1 \in \mathbb{Z}$, contains multiplicative identity

0 E Z, 🕅

<u>Remark</u>: (R,+) is Abelian group \Longrightarrow 0 e R

<u>Remark</u>: In general, multiplication, is not commutative

Commutative Ring

Definition, Commutative Ring

axb = bxa

i.e. multiplication is commutative

More Examples of Rings

1) Q, R, C are all commutative rings with identity under usual + and x

2) N and $N_0 = N \cup \{0\}$ with usual + and x are not rings as (N, +) and $(N_0, +)$ are not groups

3) $R = 2\mathbb{Z} = \{2\mathbb{Z} : \mathbb{Z} \in \mathbb{Z}\}$ with usual operations + and x is a commutative ring

For identity, VZEZ, Ze=Z => e=1\$2Z

 \Rightarrow 22 does not contain, multiplicative identity

4) Consider $M_n(\mathbb{R})$: nxn. matrices with real entries

Matrix addition is commutative

A+B: Matrix Addition

AXB: Matrix Multiplication

 $R = M_n(R)$ is a non-commutative ring, identity I_n . So are $M_n(C)$, $M_n(Q)$ and $M_n(Z)$

5) For a ring and any new, $M_n(R)$ is the set of all nxn matrices with entries in R.

For any ring, Mn(R) is a ring

6) Proposition

 $(\mathbb{Z}_n, \oplus, \otimes)$ is a commutative ring with identity 1. Denote this ring by

Z/nZ

Proof:

(i) Already seen that $(\mathbb{Z}/n\mathbb{Z}, \oplus)$ is an abelian, group (ii) $\forall [a], [b], [c] \in \mathbb{Z}_n$,

 $[a] \otimes ([b] \otimes [c]) = [a] \otimes [bc] = [a(bc)]$

 $= \left[(ab)c \right] = \left[ab \right] \otimes \left[c \right] = \left(\left[a \right] \otimes \left[b \right] \right) \otimes \left[c \right]$

(iii) Let [a], [b], $[c] \in \mathbb{Z}/n\mathbb{Z}$. Then

 $[a]([b] \oplus [c]) = [a][b+c] = [a(b+c)]$

= [ab + ac] = [ab] ⊕ [ac]

= [a][c] ⊕ [a][c]

Similarly $([a] \oplus [b])[c] = [a][c] \oplus [b][c]$.

7) Proposition

Let X be a set,
$$X \neq \phi$$
, $R = 2^{X}$ powerset.
Define binary operations; $\forall A, B \in R$.
 $A + B = A \Delta B = (A \setminus B) \cup (B \setminus A)$ (symmetric difference)
 $A \times B = A \cap B$
Then $(R, +, X)$ is a ving with 0 element ϕ , identity X
Proof:
i) (o) $A \Delta B = (A \setminus B) \cup (B \setminus A) = (B \setminus A) \cup (A \setminus B) = B \Delta A$
(i) $A \Delta (B \Delta c) = (A \Delta B) \Delta c$
(2) $A \Delta \phi = A$
(3) $A \Delta A = \phi \implies A$ is its own inverse.
Therefore (R, Δ) is an Abelian group
ii) Observe that for any subsets $A, B, C \leq X$
 $(A \cap B) \cap c = A \cap (B \cap c)$
which is basic set theory
iii) Enough to check for all subsets $A, B, C \leq X$, the equality
 $A \cap (B \Delta c) = (A \cap B) \Delta (B \cap c)$
Since \cap is commutative.

It holds true because both sides are the collection of elements of X that belong to A and to precisely one of two subsets B and C.

.

And $X \neq \phi$ and $A \cap X = A$ for any $A \subseteq X$. So X is the identity of our ring

<u>Remarks</u>:

If there exists an element IER such that 170 and

then R is a ring with identity

The identity element IER, if it exists is unique

2. Elementary property of rings <u>Remark</u> Any ring R is an Abelian Group relative to addition + , so i) OER identity is unique ii) VaeR, I-aeR sta+(-a)=0, -a is unique Lemma i) VaeR, a0=0=0a ii) $a(-b) = -(ab) = -(a)b \quad \forall a, b \in R$ $iii)(-a)(-b) = ab \quad \forall a, b \in \mathbb{R}$ Proof: i) ax0 = a0 = ax(0+0) $= a \times 0 + a \times 0$ Adding - a0 to both sides, 0 = a0 - a0 = a0 + (a0 - a0) = a0 $\implies 0=a0+0$ ⇒ 0=a0 ii) a(-b) + ab = a((-b) + b)= a0 = 0 $\implies a(-b) + ab = 0$ $\Rightarrow a(-b) = -(ab)$ Dual for showing (-a)b = -(ab) iii) (-a)(-b) = -((-a)b)) = -(-(ab)) = ab by ii

In particular, if R has an identity 1, then ∀a,b ∈ R, ► (-1)b = -(1b) = -b ► (-1)(-1) = 1 × 1 = 1

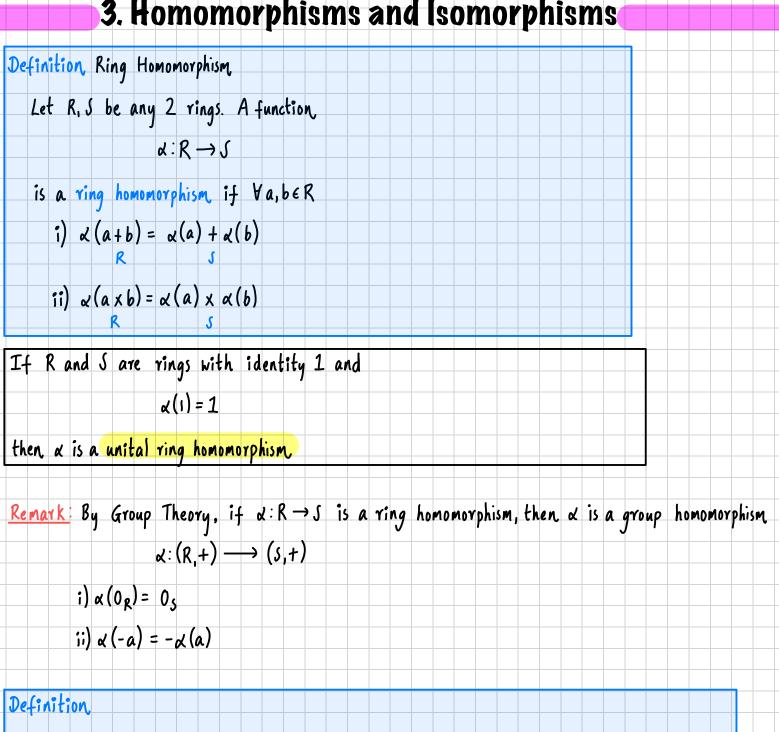
Subrings

Definition, Subring Let R be any ring (+, x), let $S \subseteq R$ be any subset We say S is called a subring of R if: (a) 0ES (identity) (b) a, bes ⇒ -aes, a+bes, axbes (closure) <u>Remark</u>: If $J \subseteq R$ is a ring under the same operations + and x as $R \Longrightarrow J$ is a subring of RProposition If S≤R is a subring, then, S is a ring relative to the same operations t, x as on R Proof: (i) From defn of subring <u>Closure</u>: atbes \implies $S \leq (R_1 +)$ <u>Identity</u>: 0 e S ⇒ (s,+) is an Abelian Group Inverse: Vaes, -aes (ii) $\forall a, b, c \in S \implies a, b, c \in R$ and since $S \subseteq R$ is closed under Xa(bc) = (ab)ca(b+c)= ab+ac (;;;) (a+b)c = ac+bc Hence by defn of a ring, S is a ring. Examples of Jubrings fields 1) C = R = Q = Z(t,x) subring subring a ring || || not a field aring ring ring 2) $N \leq \mathbb{Z}$ NOT a subring O¢N, ∀neN, -n¢N

3) $\mathbb{Z} \supseteq 2\mathbb{Z}$ is a subring without an identity ring $0 \in 2\mathbb{Z} \subseteq \mathbb{Z}$ Z is a ring with multiplicative identity $1 \in \mathbb{Z}$: $\forall z \in \mathbb{Z}, 1 \cdot z = z$ $1 \notin 2\mathbb{Z} \implies 2\mathbb{Z}$ is a ring without an identity 4) Vn>1 $M_n(\mathcal{C}) \supseteq M_n(\mathcal{R}) \supseteq M_n(\mathcal{Q}) \supseteq M_n(\mathcal{Z})$ Subrings Definition, Square free Fix any $d\in\mathbb{Z}$, $d\neq0$, $d\neq1$. d is square free $\iff p^2 X d \forall p, prime$ i.e. d is not divisible by p^2 V primes p de{...,-6,-5,-3,-2,-1, 2, 3, 5, 6,...} (5) R=C is a ring. Define S⊆R $S = \{a + b / d : a, b \in \mathbb{Z}, d \text{ prime free}\} = \mathbb{Z}[d] \text{ with } +, x$ <u>Claim</u>: $S = \mathbb{Z}[d]$ is a subring of C = R(a) 0=0+0√d identity (b) a + b√d, a' + b'ld es ► -a-bJd es ► (a+a') + (b+b') \alpha es ► $(a+b\sqrt{a})(a'+b\sqrt{a}) = (aa'+bb'd) + (ab'+db')\sqrt{a} \in S$ 7 7 Hence S is a subring \Longrightarrow S a ring if d>0 ⇒ S≤R subring Definition, $d=-1 \implies \mathbb{Z}[i] = \{a+ib: a, b\in\mathbb{Z}\}$ are called Gaussian integers (6) Proposition

Let R be any ring. Let X be any non-empty set. Consider $F_{R}^{X} = \{f \mid f : X \longrightarrow R\}$ Define the binary operations + and \times on F_R^{\times} , $\forall x \in X$ by (f+g)(x) = f(x) + q(x) $(f \times g)(x) = (f g)(x) = f(x) g(x)$ F_R is a ring <u>Proof</u>: i) (0) $\forall x \in X$, (f + g)(x) = f(x) + g(x) = g(x) + f(x) since $f(x), g(x) \in R$, (R, +) Abelian =(g+f)(x)(1) (f+(g+h))(x) = f(x) + (g+h)(x)= f(x) + (q(x) + h(x)) $= (f(x) + g(x)) + h(x) \quad \text{since } f(x), g(x), h(x) \in \mathbb{R}, (\mathbb{R}, +) \text{ group}$ =(f+g)(x) + h(x) $=((j+q)+h)(x) \quad \forall x \in X$ (2) O function: $O: X \rightarrow R$; $x \mapsto O$ (t+0)(x) = t(x) + 0(x) = t(x) + 0= f(x)= 0 + f(x)= (0+1)(x)(3) Inverse function (-f)(x) = -f(x)(f+(-f))(x) = f(x) + (-f(x))= f(x) - f(x)= 0 = -f(x) + f(x) = (-f + f)(x)Hence $(F_R^X, +)$ is an Abelian group

3. Homomorphisms and Isomorphisms



If
$$\alpha: R \rightarrow S$$
 is a ring homomorphism and α is bijective, then α is a ring isomorphism.
If \exists an isomorphism $\alpha: R \rightarrow S$, then R is isomorphic to S denoted by

Properties of Homomorphisms

Lemma
(a) The identity map
i:
$$R \rightarrow R$$
; $i(a) = a$
is a ring isomorphism, ; $R \equiv R$
(b) If $\alpha: R \rightarrow S$ is a ring isomorphism, then,
 $\alpha^{-1}: S \rightarrow R$
is a ring isomorphism, $R \equiv S \implies S \cong R$
(c) If $\alpha: R \rightarrow S$ and $\beta: S \rightarrow T$ are ring homomorphism (isomorphism) then,
 $\beta \alpha: R \rightarrow T$
is a ring homomorphism (isomorphism); $R \cong S$ and $S \cong T \implies R \equiv T$
(d) Suppose $R \cong S$.
R is commutative $\iff S$ is commutative
Proof:
(a) $\forall a, b \in R$
 $i(a+b) = a+b = i(a) + i(b)$
 $i(ab) = ab = i(a); i(b)$
and identity maps are bijections
(b) Let $x, ig \in S$. From, Group Theory
 $\alpha''(-x) = -\alpha''(x)$
 $\alpha''(-x) = -\alpha''(x)$
 $\alpha''(x) = \alpha''(x) + \alpha''(y)$
Put $a = \alpha''(x)$ and $b = \alpha''(y)$. Then, $\alpha(a) = x$ and $\alpha(b) = y$
As α is a homomorphism,
 $\alpha(ab) = \alpha(a) \alpha(b) = xy$
 $\Rightarrow \alpha''(-x) \alpha''(x) = ab = \alpha''(xy)$
Further d is a bijection, $\implies \alpha''$ is a bijection.

(c) By Group Theory,
$$\beta \alpha$$
 preserves + operation
 $\forall a, b \in R$
 $(\beta \alpha) = \beta(\alpha(ab)) = \beta(\alpha(a)\alpha(b)) = \beta(\alpha(a))\beta(\alpha(a)) = (\beta \alpha)(a)(\beta \alpha)(b)$
 $\implies \beta \alpha$ is a homomorphism.
 α and β are bijection. $\implies \beta \alpha$ are bijection.
(d) Suppose R is commutative. $\forall a, b \in R$
 $\alpha(a)\alpha(b) = \alpha(ab) = \alpha(ba) = \alpha(b)\alpha(a)$
Suppose S is commutative. $\forall a, b \in S$
 $\alpha^{-1}(a)\alpha^{-1}(b) = \alpha^{-1}(ab) = \alpha^{-1}(ba) = \alpha^{-1}(b)\alpha^{-1}(a)$

Examples

1) Let

$$S = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R})$$

S is a subring of
$$M_2(\mathbb{R})$$
.
Indeed $O_{2\times 2} \in S$ and $\forall X, Y \in S, -X, X + Y \in S$
Checking $X Y$

$$XY = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac-bd & ad+bc \\ -(ad+bc) & ac-bd \end{pmatrix} \in S$$

Now define function

$$d(a+ib) = (a b)$$

d is a bijection (group theory)

Moreover

$$\alpha((a+ib) + (c+id)) = \alpha((a+c) + i(b+d)) = \begin{pmatrix} a+c & b+d \\ -(b+d) & a+c \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \alpha(a+ib) + \alpha(c+id)$$

$$\begin{aligned} & \left((a+ib)(c+id) \right) = \alpha (ac-bd+i(ad+bc)) \\ &= \left(ac-bd & ad+bc \right) = \left(a & b \\ -(ad+bc) & ac-bd \end{array} \right) = \left(a & b \\ -b & a \end{pmatrix} \left(c & d \\ -d & c \end{array} \right) \\ &= \alpha (a+ib) \alpha (c+id) \end{aligned}$$

Thus a is a ring homomorphism => d is a ring isomorphism.

2) Let m, n e IN and m In. Define

$$d: \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z};$$
$$d([\mathbb{Z}]_n) = [\mathbb{Z}]_n$$

For any $z \in \mathbb{Z}$, for any $w \in \mathbb{Z}$, we have

$$\begin{bmatrix} z \end{bmatrix}_{n} = \begin{bmatrix} w \end{bmatrix}_{n} \iff n | (z - w)$$

$$\iff m | (z - w) \quad \text{since } m | n$$

$$\iff \begin{bmatrix} z \end{bmatrix}_{m} = \begin{bmatrix} w \end{bmatrix}_{m}$$

therefore & is well-defined. We have equalities

$$d([z]_{n} \oplus [w]_{n}) = d([z+w]_{n})$$
$$= [z+w]_{m} = [z]_{m} \oplus [w]_{n}$$

$$= \alpha([z]_n) \oplus \alpha([w]_n)$$

and similarly for
$$\alpha([z]_n[w]_n) = \alpha([z]_n)\alpha([w]_n)$$

$$\Rightarrow$$
 d is a ring homomorphism.
 $\mathbb{Z}/n\mathbb{Z} = n$. $\mathbb{Z}/m\mathbb{Z} = m$

Note:
$$\mathbb{Z}/n\mathbb{Z} = n$$
, $\mathbb{Z}/m\mathbb{Z} = m$

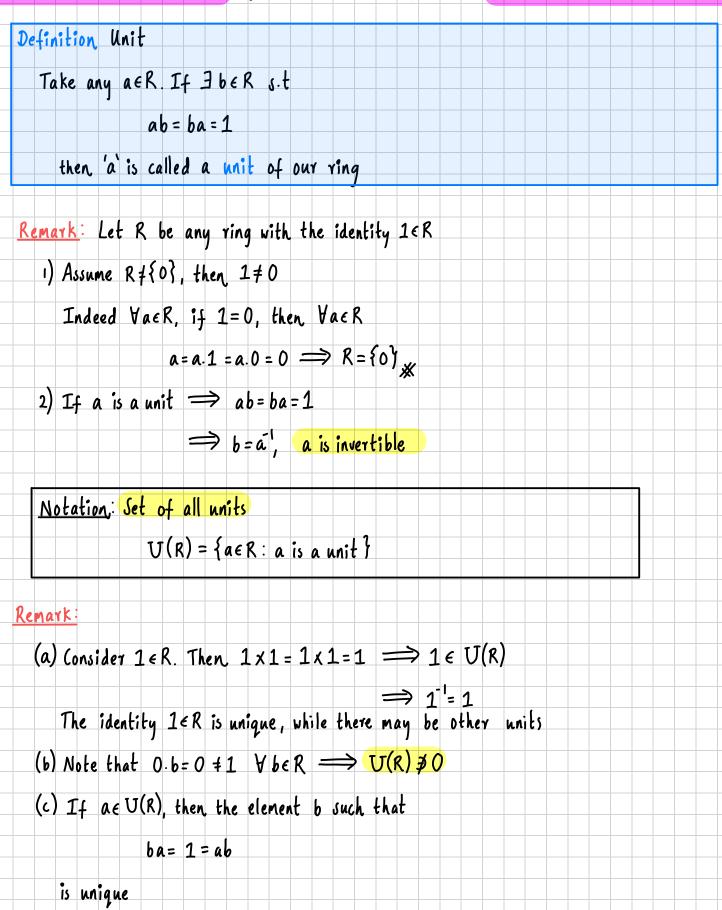
Important !

Let R and S are rings with multiplicative identity
$$1_R \in R$$
 and $1_S \in S$

If
$$d: R \rightarrow s$$
 is an onto homomorphism (or isomorphism) then

 $\alpha(I_R) = 1_S$

4. Units and Fields



If a∈ U(R) is a unit ⇒ b=a' is unique

Lemma

Suppose for some
$$a \in R$$
, $\exists b, c \in R$ such that

$$ab = ca = 1 \implies b = c and so a \in U(R)$$

$$\underline{proof}: b = 1b = (ca)b = c(ab) = c1 = c \implies b = c$$

Corollary

$$ab=1=ba \implies b'=b$$

Proposition

Let
$$(R,+,\times)$$
 be any ring with an identity such that $R \neq \{0\}$
Then $(U(R),\times)$ is a group

Proof:

Identity: We know that 1 is a unit of R, that is
$$1 \in U(R)$$
.

$$\forall a \in U(R), a \ge 1 = a = a \ge 1$$

Associative: We know that x is associative on
$$R \implies$$
 associative on $U(R)$

Inverse: If
$$u, v \in U(R)$$
, $\exists u', v' \in R$ such that
 $uu' = 1 = u'u$ and vv'
Note that u is the inverse of $u'' \cdot u = (u')$

$$uu' = 1 = u'u$$
 and $vv' = 1 = v'v$

Note that u is the inverse of
$$u'; u = (u') \implies u' \in U(R)$$

Closure: Further

$$(uv)(v^{-1}u^{-1}) = (u)(vv^{-1})u^{-1} = u1u^{-1} = uu^{-1} = 1$$

 $\implies (uv)^{-1} = v^{-1}u^{-1}$
and similarly
 $(u^{-1}u^{-1})(u^{-1}) = u^{-1}u^{-1}$

Hence $uv \in U(R)$ by definition.

Examples of Units

1) R = Z = 0, 1. Hence $U(R) = U(Z) = \{1, -1\}$: - NoT closed under + - closed under X 2) $U(M_n(\mathbb{R})) = \{ \text{invertible matrices} \}$ = $\{A \in M_n(R): det A \neq 0\} = GL(n, R)$ $\implies U(M_n(R)) = GL(n, R)$: General Linear Group 3) $U(R) = R \setminus \{0\}$ $U(\mathbf{Q}) = \mathbf{Q} \setminus \{0\}$ $U(\mathcal{C}) = \mathcal{C} \setminus \{0\}$ 4) Proposition $U(\mathbb{Z}/n\mathbb{Z}) = \{ [a] : a \in \mathbb{Z} \text{ and } g(d(a, n) = 1 \} \}$ Proof: If $[a] \in U(\mathbb{Z}/n\mathbb{Z}) \Longrightarrow [a][b] = [1]$ for some $[b] \in U(\mathbb{Z}/n\mathbb{Z})$ $\implies [ab] = [1]$ \Rightarrow n (ab - 1) \implies ab-1 = ng for some $q \in \mathbb{Z}$ ⇒ ab-nq=1 \implies gcd(a,n) = 1 Bezout's Theorem Conversely if $gcd(a,n) = 1 \implies \exists s, t \in \mathbb{Z}$ such that 1 = as + nt \implies [1] = [as + nt] ⇒ [1] = [as] \Rightarrow [1] = [a][s] 5) Proposition For p prime, $U(\mathbb{Z}/p\mathbb{Z}) = (\mathbb{Z}/p\mathbb{Z}) \setminus \{[0]\}$

<u>**Proof**</u>: If $[a] \neq [0] \implies p \neq a \implies gcd(a, p) = 1$ and [a] is a unit by previous

Fields

Definition, Field

```
A field is a commutative ring IF with an identity 1 such that U(F) = F \setminus \{0\}
```

Example: Q, R, C, $\mathbb{Z}/p\mathbb{Z}$; p prime are all fields.

5. Zero Divisors and Integral Domains

Zero Divisors Definition Zero Divisors Let R be a ring and $R \neq \{0\}$ An element a ER is a zero divisor if for some bER\{0}, bf0 ab = 0 or ba = 0Set of zero divisors ZD = {Zero divisors of R} <u>Remark</u>: O is a O divisor \implies O \in ZD(R) <u>Examples:</u> $I) R = \mathbb{Z} \Longrightarrow 2D(\mathbb{Z}) = \{0\}$ 2) Consider R=M2(C). Take $A = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \neq 0 \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \neq 0$ $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies A, B \in 2D(R)$ Non-Zero Divisors Definition, Non-Zero Divisors a ER is a non-zero divisor if V b ER \{0}, we have $ab \neq 0$ and $ba \neq 0$ Set of non-zero divisors NZD = { non-zero divisors of R} Jo if a ENZD(R) then $ab=0 \implies b=0 \quad \forall a \in R ; ba=0 \implies b=0 \quad \forall a \in R$

Integral Domains

Definition, Integral Domains

that is has NO non-trivial non-zero. Equivalently

$$NZD(R) = R \setminus \{0\}$$

Example

<u>Remark</u> For any ring R, the condition $2D(R) = \{0\}$ is equivalent to either of

i) $\forall a, b \in \mathbb{R} \setminus \{0\}$, we have $ab \neq 0$

ii)
$$\forall a, b \in R$$
, the equality $ab=0 \implies a=0$ or $b=0$

Observe and compare

2) R has identify 1 2) R has identify 1

3)
$$U(R) = R \setminus \{0\}$$
 \implies 3) $ZD(R) = \{0\}$

Lemma

(a) If R is a ring with an identity 1, then
$$U(R) \leq NZD(R)$$

(b) Any field is an integral domain

Proof:

(a) Take any
$$a \in U(R)$$
. Suppose that

ab=0 for some ber aeu(r)
$$\Longrightarrow$$
 af 0

Then
$$b = 1b = (a^{-1}a)b = a^{-1}(ab) = a^{-1}0 \implies b = 0$$

Similarly ba =0 ⇒ b=0

$$\implies$$
 af 2D(R) \implies af N2D(R)

(b) Let R be a field Then, properties 1,2 for a field
$$\implies$$
 1,2 for an ID
R a field \implies R is a commutative ring with an identity
By part (a), $U(R) \le N2D(R)$
Now $R \setminus \{0\} = U(R) \le N2D(R) \le R \setminus \{0\}$;
by diff of field
Observe $\blacktriangleright 0 \le 2D(R) \implies 0 \le 2D(R)$
 $\blacktriangleright a \in R \setminus \{0\} \implies a \in U(R)$ field
 $\implies a \in N2D(R)$
Therefore $N2D(R) = R \setminus \{0\} \implies R$ is an integrable domain.
Example of Integral Domains
1) for $R=Z$; $U(Z) = \{1, -1\}$
 $N2D(Z) = Z \setminus \{0\}$
Hence $U(Z) \le N2D(Z)$, but $V(Z) \ne N2D(R) \ge Z \setminus \{0\}$
Thus Z is an ID
Z is not a field
2) In $M_2(R)$, the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is a 0 divisor because
 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} (0 \ 0 \end{pmatrix}$
3) In Z/nZ , we have $2D(Z/nZ) = \{0\} \cup I\{a\}$: $a \in Z$, $a \ne 0$, $g \in J(a,n) > L$
Indeed if $gcd(a,n) = d > 1$, then,
 $\begin{bmatrix} n \\ d \end{bmatrix} \ne \begin{bmatrix} 0 \end{bmatrix}$
(a) such a zero divisor as
 $U(R) \le N2D(R)$

Cancellation Property

Theorem Cancellation, Property Let R be any ring, let a e R be a non-zero divisor, i.e. a e NZD(R). Then. ∀ b,c∈R, we have i) $ab = ac \implies b = c$ ii) ba=ca ⇒ b=c Proof: i) $ab = ac \implies a(b-c) = 0$ \implies b-c=0 since a $\in N2D(R)$, a $\neq 0$ ⇒ b=C ii) Dual Argument Proposition, Let R be a finite ring with an identity 1. Then U(R) = NZD(R)<u>**Proof**</u>: Due to previous Lemma, $U(R) \leq NZD(R)$. Lets prove the opposite inclusion. Let $R \setminus \{0\} = \{a_1, a_2, \dots, a_n\}$ for some new and $1 \in R \setminus \{0\}$ Fix $a_i \in NZD(R)$. Then, $a_i a_j \neq 0$ for j=1, ..., n. So {a;a;: j=1,...,n} ⊆ R\{0} If $a_i a_j = a_i a_k \implies a_j = a_k$ by cancellation property ⇒ j=k Thus |{a;a;: j=1,...,n}|=n and |R\{0}|=n Therefore {a;a;:j=1,...,n} = R\{0}

But
$$1 \in \mathbb{R} \setminus \{0\} = \{a; a; j = 1, ..., n\} \implies \exists ag st a; ag = 1$$

Similarly considering opposite order

Now

$$a_{\ell} = 1a_{\ell} = (a_{k}a_{i})a_{\ell} = a_{k}(a_{i}a_{\ell}) = a_{k}1 = a_{k}$$

Hence a; EU(R)

Corollary

Proof:

The ring is an integral domain
$$\implies$$
 R is commutative
Also $1 \in R$ and $2D(R) = \{0\}$. By the above proposition

V(R) = N2D(R) = R (109) \Rightarrow R is a field

Wedderburn Theorem

Theorem Wedderburn Theorem

 $ZD(R) = \{0\}.$

Then R is a field

Jacobson Theorem

Theorem Jacobson Theorem

Let R be a ring such that $\forall a \in R$, $\exists n = n(a) > 1$ such that

Then R is commutative

Example: Suppose that

 $a^2 = a \quad \forall a \in R$

Then R is commutative.

Indeed $\forall a, b \in R$; $(a+b) = (a+b)^2 = (a+b)(a+b) = a^2 + ab + ba + b^2 = a+b$

$$\implies ab + ba = 0$$
Also $(-a) = (-a)^{2} = (-a)(-a) = a^{2} = a \implies (-a) = a \forall a \in \mathbb{R}$
Hence $ab + ba = 0 \implies ab - ba = 0$

$$\implies ab = ba$$
Finite Rings with $2D = \{0\}$
Theorem.
Let R be any ring with $|\mathbb{R}| > 1$.
Juppose that $2D(\mathbb{R}) = \{0\}$.
Proof:
Suppose R is a ring with $2D = \{0\}$.
Let $\mathbb{R} \setminus \{0\} = \{a_{1}, \dots, a_{n}\}$ for some $n \in \mathbb{N}$,
$$\implies a_{i} \in \mathbb{N} \ge D(\mathbb{R})$$

$$\implies a_{i} a_{j} = a_{i} \text{ for some } j$$

$$\implies a_{j} a_{k} = a_{k} \text{ for any } k$$

Similarly for k=j

$$a_j a_j = a_j \implies a_k a_j a_j = a_k a_j$$

 $\implies a_k a_j = a_k$

⇒ a; identity

Units are NOT Zero divisors

Theorem

Let R be any ring, then,

$$U(R) \cap ZD(R) = \phi$$
Proof: (by contradiction):
Suppose I are R s.t are U(R) and are ZD(R)
If are ZD(R) \Longrightarrow I brief R \{0} s.t
ab = 0 or ba = 0
1) ab = 0 \Longrightarrow b = (a⁻¹a) b = a⁻¹(ab) = a⁻¹0 = 0
 \implies b = 0
 \Rightarrow b = 0
 \Rightarrow b = 0

2) Similar

Hence empty intersection.

6. Ideals of a Ring

Definition of Ideals

- Definition Ideals of a ring
 - Let R be any ring and $I \subseteq R$ be any subset
 - The subset I is an ideal if
 - i) 0 E I
 - ii)aeI ⇒-aeI
 - iii) a,b∈I ⇒ a+b∈I
 - iv) a∈I, r∈R ⇒ ar, ra∈I

<u>Note</u>:

- ∀ rings R, ideal ⇒ subrings
 Converse NOT always true. In general
 - subring ≠ ideal

Examples of ideals

<u>ргоо-</u>[:

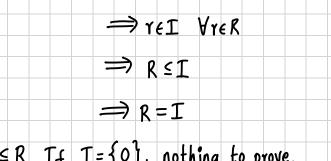
- i) 0 E I by Z=0
- ii) take any $nz \in I \implies n(-z) = -nz \in I$

$$a+b=n+nw=n(2+w)\in I$$

iv)
$$a=nz$$
 $\downarrow \implies ar = (nz)w = n(zw) \in I$
 $r=w$ \downarrow

and $ar = ra \in I$

(2) Take any
$$R = Q \supset S = Z$$
 is a subring
We know that Z is a ring itself
 $\implies S$ is a subring
But S is not an ideal of Q
proof: counterexample:
Property (iv) does not hold
 $a=2, r=2 \in Q \implies \sigma r = \frac{L}{3} \neq Z$
(3) General example: Trivial Ideals
 $\forall R a ring$
 $\Rightarrow I = fol^{2}$ is an ideal as
 $ii) O+O = O,$
 $ii) - O = O \in \{0\}$
 $iv) Oxr = O \in \{0\}$ $\forall reR$
 $\Rightarrow I = R$ is also an ideal
Theorem
(a) Suppose $R \neq \{0\}$ has an ideality $1 \neq O.$
If $I \leq R$ is an ideal and $I \in I$, then
 $I = R$
(b) Suppose $R \neq \{0\}$ has an ideality $1 \neq O.$
If $I \leq R$ is an ideal and $I \in I$, then
 $I = R$
(b) Suppose that R has identity 1. Also suppose that $\forall ac R \setminus \{0\}, \exists b \in R$ st either
 $ab = 1$ or $ab = 1$
Then $\{0\}$ and R are the only ideals of R
(c) If R is a field, then $\{0\} \leq R$ and R are the only ideals of R
(c) If R is a field, then $\{0\} \leq R$ and R are the only ideals of R
(c) Suppose $1 \in I$ and $I \leq R$ he an ideal. By defn of ideal
 $\forall a \in R, \forall a \in I, we have $ra \in I.$
The particular this holds for $a = 1 \implies ra = Y$$



(b) Take any ideal I≤R. If I={0}, nothing to prove. Suppose I≠{0} and O∈I => ∃ a∈R\{0} such that a∈I By hypothesis, ∃b∈R such that

$$ba = 1$$
 or $ba = 1 \implies 1 \in I$ by definition of ideal

(c) In a field R, $\forall a \in R \setminus \{0\}, \exists a' so (b) \Longrightarrow (c)$

Kernels and Images

Definition Kernel/Image Let d: R → J be any ring homomorphism VR, S rings The Kernel of R: Kerd = {reR | d(r) = 0} The image of R: Imd = {ses | s=d(r) for some reR}

Another way of writing image is Imd = {d(r) < s | r < R }

Lemma

Let
$$d: R \rightarrow J$$
 be any ring homomorphism. Then

<u>Proof:</u>

(a)
$$d: R \longrightarrow S$$
 is a ring homomorphism

In particular, this is a group homomorphism w.r.t '+' operation

 $\boldsymbol{\mathcal{A}}:(\boldsymbol{\mathcal{R}},+) \longrightarrow (\boldsymbol{\mathcal{S}},+)$

so Imd ≤s is an additive subgroup

Hence by properties of homomorphisms from group theory
i)
$$d(0) = 0 \implies 0 \in Im \times$$

ii) If $a, b \in Im \times$, then $\exists x, y \in R$ such that
 $a = \alpha(x) = b = d(y)$
By group theory
 $-a = -\alpha(x) = -\infty(-x) \in Im \times$
Finally
 $a + b = \alpha(x) + d(y) = \alpha(x + y)$ and $ab = \alpha(x)d(y) = \alpha(xy)$
Hence $-a, a + b, ab \in Im \times$
Therefore Im α is a subring
(b) Need to show that kered $\subseteq R$ is an ideal.
i) $0 \in R$, $\alpha(O_R) = O_S$ by Group Theory $\Longrightarrow 0 \in ker \times$
iii) $a, b \in ker \times d$
 $\alpha(-a) = -\alpha(a) = -0 = 0 \implies -a \in ker \times$
iii) $a, b \in ker \times d$ $\Rightarrow \alpha(a) = \alpha(b) = 0$
 $\alpha(a + b) = \alpha(a) + \alpha(b) = 0 + 0 = 0 \implies a + b \in ker \times$
 $d(ar) = \alpha(a)\alpha(r) = 0 \times (r) = 0 \implies ra \in ker \times$
 $d(ra) = \alpha(r)\alpha(a) = \alpha(r) = 0 \implies ra \in ker \times$
 $d(ra) = \alpha(r)\alpha(a) = \alpha(r) = 0 \implies ra \in ker \times$
Hence $-a, a + b, ra, ar \in ker \times d \implies ker \times d$ is an ideal

Proposition

Let
$$d: R \longrightarrow J$$
 be any ring homomorphism.
Then d is one-to-one \iff kerd = $\{0\}$
Proof:
 $(\clubsuit):$ Suppose d is one-to-one.
 $d(O_R) = O_S \implies O \in kerd$
If $r \in kerd \implies d(r) = O = d(O)$
 $\implies r = O \quad \forall r \in R \quad since \ d \ is \ 1 - 1$
Hence $kerd = \{0\}$
 $(\clubsuit):$ Suppose that $kerd = \{0\}$. Then $\forall u, v \in R$
 $d(u) = d(v) \iff d(u-v) = O$
 $\iff u - v \in kerd$

Corollar

Let R be a field, S be any ring and
$$\alpha: R \longrightarrow S$$
 be any ring homomorphism. Then either

More generally, the same property of & holds if we replace the hypothesis that R is a field by a weaker property that

$$1 \in \mathbb{R}$$
 and $\forall a \in \mathbb{R} \setminus \{0\}$, $\exists b \in \mathbb{R}$ such that $ab = ba = 1$

<u>Proof:</u>

By part (b) of the Lemma on pg26, kerd is an ideal.
By part (b) of the Theorem on pg25, kerd =
$$\{0^3\}$$
 or kerd = R
Case 1: kerd = $\{0^3\} \implies \alpha$ is one-to-one
Case 2: kerd = R $\implies \alpha$ maps all elements of R to 0
 $\implies \forall r \in R, \alpha(r) = 0$
 $\implies Imd = \{0^3\}$

									7			2	201	h	10	<u> </u>		6 1	A	0 4													
										. (-7	. 1		Y	le	2	U			60		5											
(1)	F	٥Ŷ	an	y 1	ina	g ƙ	ζ,	th	e i	ide	nti	ty																					
				J	-	/ : R						1																				_	
										,																							
	is	a	rin	9	iso	M0'	rph	isw	1	(se	en	ab	0V0	2)																			
	Pri	0 P O	sit	ion																													
		7		<u>(</u>		1		1	ρ.		P	,																					
		70	210	70	UNC [.]	tion	n (J - 1			N,	/																					
								a	⊢) ()																						
		15	a	rin	g	how	0 M	0 Y Ç	his	m.																							
	_									•																							
	<u>р</u> к] :										,																				
		لم	(a	6)	=	0 =	0	X (0 =	: d	(a)	X	X(6)																			
		لم	(a·	t b) =	- 0	=	0	+ (0 =	: d	(a)	d	(ь))																	
	He	nc	e																														
				1		•	5.	<u> </u>	2.	:1	a \ .	- ^	1		ae	. 0			<u>_</u> 2		5	~1											
															Ī	:	• 0	λ = 	U	-	10												
				k	er	ม =	{	aE	R	IJ	(a)	=	04	Ξ	R																		
	are	e i	dea	ıls	of	R																											
					T																												
(2)	L	: (
					T,	2 (1R	() =	= (){	a 0	6	:	a,	b , (C E	RÌ																	
											'																						
	T ₂	(R) <	M	2 (R)	15	۵,	sub	าเก	9																						
	De	fir	e	d :	T, ((R)		→	R																								
		J																															
							X	0	U C		a																						
	TI	•••	•••	_	•		k -			<u>د ام</u>	1	0 م	.																				
						ng				•													_		•			, .					
		λ	[[۵	6)+	(a	k	;') :	= X	()	1+	a'	b	+ b		2	۵	ta	! =	α	(a	6		+	م	a	b	· \			
			()	U	С,) (1	/		1	0			(+(- 1						10	L	/			0	C'	1			
		,	11		1.)	1.1	, 1	11		,	1.	_		, (1		1.	L \		1.1	-	1						
		٩		a 0 (b ()	a 0	b C ^l		=	لم	6	a 0	۵	ь. Г	t b c'		:		aa	=	δ	0	р ()	لم	(a 0	b را						-	
			• •	-	- 1	, ,		' '			١	~		ľ,		/						١, ٣	- /		، ۷	v							

Here
$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \ker d \iff d \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = 0$$

 $\iff a = 0$
Therefore
 $\ker d = \begin{cases} (0 & b \end{pmatrix} : b, c \in \mathbb{R} \end{cases}$
and $\ker d$ is an ideal
Proposition
Let \mathbb{R} be any ving, $\mathbb{I}, \mathbb{J} \subseteq \mathbb{R}$ be any ideal
 $\mathbb{I} \cap \mathbb{J}$ is an ideal of \mathbb{R}
Presf:
i) $0 \in \mathbb{I}$ and $0 \in \mathbb{J} \implies 0 \in \mathbb{I} \cap \mathbb{J}$
ii) $a \in \mathbb{I} \cap \mathbb{J} \implies a \in \mathbb{I}$ and $a \in \mathbb{J}$
 $\implies -a \in \mathbb{I}$ and $-a \in \mathbb{J}$
 $\implies -a \in \mathbb{I} \cap \mathbb{J}$
iii) $a, b \in \mathbb{I} \cap \mathbb{J} \implies a, b \in \mathbb{I}$ and $a, b \in \mathbb{J}$
 $\implies a + b \in \mathbb{I} \cap \mathbb{J}$
iv) $\mathbb{T} \in \mathbb{R}, a \in \mathbb{I} \cap \mathbb{J} \implies \mathbb{T} \times \mathbb{R}, a \in \mathbb{I} \text{ and } a \in \mathbb{J}$
 $\implies \tau a, a \times \mathbb{I} \cap \mathbb{J}$
Let \mathbb{R} be any ring and $\mathbb{I}, \mathbb{J} \subseteq \mathbb{R}$ be any 2 ideals.
Define
 $\mathbb{I} + \mathbb{J} = \{a + b : a \in \mathbb{I}, b \in \mathbb{J}\}$
Sum of ideals

Lemma

(a) I+J is an ideal of R

(b) The union IUJ⊆I+J

(c) The sum I+J is the smallest ideal of R containing IUJ

Proof:

- (a) i) 0 = 0 + 0 ∈ I + J
 - ii) VaeI and seJ

J

Γ

iii)
$$(a+b)+(c+d) = (a+c)+(b+d) \in I+J$$
 + is Abelian
 n m m n
 $T+T$ $T+T$ T J

iv)
$$(a+b)(c+d) = (ac+bc) + (ad+bd) \in I+J$$

 $\int_{M} \int_{M} \int_{M} J$

Observe that
$$a \in I$$
 and $c \in I \Longrightarrow a c \in I$
 $c \in I$ and $b \in R \Longrightarrow b c \in I$ $A \Longrightarrow a c + b c \in I$

Similarly be J and de J
$$\Longrightarrow$$
 bd e J \Longrightarrow ad t bc e J
de I and ae R \Longrightarrow ad e J \longrightarrow ad t bc e J

Hence
$$(ac + bc) + (ad + bd) \in I + J \implies I + J$$
 is a subring

$$(a+b)Xr = ar + br \in I+J$$

$$n$$

$$I$$

$$J$$

$$rx(a+b) = ra + rb \in I+J$$

J

Μ

T

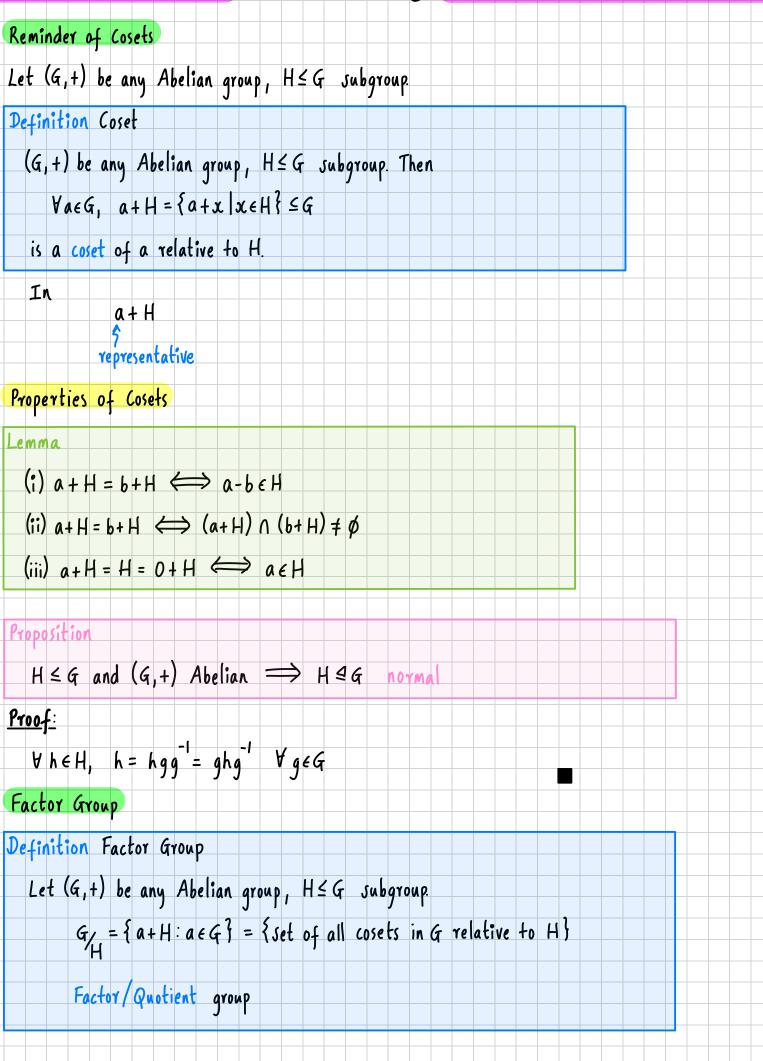
 \implies I + J is an ideal of R.

(b) Suppose a∈I ⇒ a	a=a+0 E I + J
\implies	I ≤ I + J (*)
Juppose b∈I ⇒ b	= 0+b e I+J
	. <i+2 (*)<="" th=""></i+2>
From (*) IUJ⊆I+J	
	$\in \mathbb{R}$ is any ideal of R containing IUJ, then K also contains I+J
Take any ideal K≤R su	nch that IUJ⊆K.
Need to show that It;	J⊆K
$I, J \in K \Longrightarrow A$	aeA, beJ, a, beK
, → at	
Hence ItJ≤K	
Example of a sum	
$R=\mathbb{Z}$, then $I=4\mathbb{Z}$, $J=1$	0Z. Then
I +J⊆Z i	s an ideal
<u>Claim</u> : 4Z + 10Z = 2Z	
proof:	
(⊆): Juppose x ∈ 4 <i>1</i> +	$10\mathbb{Z} \Longrightarrow x = 4\mathbb{Z} + 10\mathbb{W} = 2(2\mathbb{U} + 5\mathbb{V})$
	$\implies \chi \in 2\mathbb{Z}$
(2): Suppose ye2Z	
	or some $Z \in \mathbb{Z}$. Observe $2 = -8 \pm 10$
	(2+10)z = (-8)z + 10z
y - 22 - (8	
	$= (4(-2)) + 10z \in 4Z + 10Z$
More generally for any m	
mZ+nZ	= gcd(m,n)Z
<u>рлоо</u> ф:	
	\Rightarrow z=am, +nb, a, b $\in \mathbb{Z}$

Let
$$d = \gcd(m, n)$$

 $d \mid m$ and $d \mid n \implies m = dl$ and $n = dk$ for some $k, l \in \mathbb{Z}$
 $\implies 2 = a(all + b(l))$
 $\implies 2 = d(all + bk)$
 $\implies 2$

8. Factor Rings



Factor Rings

Now let R be any ring \implies (R,+) is an Abelian group.

Let I≤R be any ideal of R. Then

$$I \subseteq R$$
 is a subgroup relative to $+ \Longrightarrow$ we have R/T

Consider factor set $R_{/L}$ with binary operation

$$Addition: (a+I)+(b+I) = (a+b)+I$$

Proposition

The

are well-defined

<u> Proof:</u>

By Group Theory, the set
$$R/I$$
 is an Abelian group under t
In particular, $+_{R/I}$ is well-defined
Showing via explicit calculation:
Suppose $a + I = a' + I$ and $b + I = b' + I$ for some $a, a', b, b' \in R$
 $\implies a - a' \in I$ and $b' - b \in I$
Hence
 $(a - a') + (b - b') \in I$ and $ab - a'b' = (a - a')b + a'(b - b') \in I$
 $\implies (a + b) - (a' + b') \in I$ and $ab - a'b' \in I$
 $\implies (a + b) - (a' + b') \in I$ and $ab - a'b' \in I$
Therefore

$$\frac{+}{2}: (a + I) + (b + I) = (a + b) + I$$

$$= (a' + b') + I$$

$$= (a'+I) + (b'+I)$$

$$\underline{x}: (a+I) \times (b+I) = (ab) +I$$

$$= (a'+I) \times (b'+I)$$

Proposition

$$(R/_{I}, +, x)$$
 is a ring with $+, x$ defined above

$$\frac{Proof:}{Associativity:} \text{ For any 3 cosets } a+I, b+I, c+I \in R_{I}$$

$$((a+I) \times (b+I)) \times (c+I) = (ab+I) \times (c \times I)$$

$$= (ab)c+I$$

$$= (abc) + I$$

$$= (a+I) \times (bc \times I)$$

<u>Distributivity</u> :

:) $(a + I) \times ((b + I) + (c + I)) = (a + I) \times ((b + c) \times I)$

$$= a(b+c) \times I$$
$$= (ab+ac) \times I$$

ii) Similar

By Group Theory, (R/I, +) is an Abelian group.

Has identity I = 0+I

inverse: -(a+I) = (-a+I)

Abelian as

(a+I)+(b+I) = (a+b)+I = (b+a)+I = (b+a) + (a+I)

Examples

1) Let $R = \mathbb{Z}$ and $\forall n \in \mathbb{N}$, we have ideal

$$I=nZ \leq Z$$

For any a, b \in Z, we have

Hence in quotient ring Z/I, we have

$$a+I = [a]$$

and

$$R_{I} = Z_{nZ} = \{ [0], [1], ..., [n-1] \} = Z_{nZ}$$

t and x are usual modulo n rules

Fundamental Theorem of Homomorphisms for Rings

Theorem

Let R,S be any rings and
$$\alpha: R \longrightarrow S$$
 be a homomorphism

Then $ker \alpha \in \mathbb{R}$ an ideal of \mathbb{R} and $Im \alpha \leq S$ is a subring of S and

R/ ≅ Imd Kera

<u>Proof</u>: Let I = Kerd

Define

$$\overline{\alpha}(a+I) = \alpha(a)$$
 $\forall a \in \mathbb{R}$

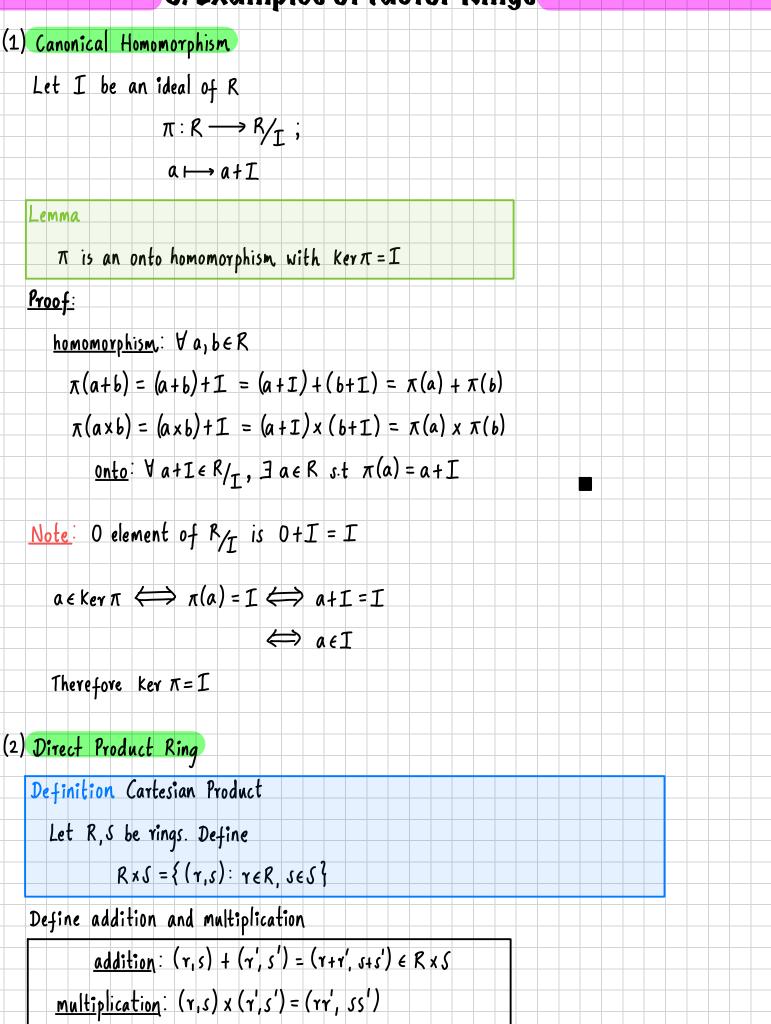
show that I is bijective and a ring homomorphism.

<u>well-defined</u>: Take a, b e I such that

$$a+I = b+I \iff a-b \in I = kerd$$
$$\iff \alpha(a-b) = 0$$
$$\iff \alpha(a) - \alpha(b) = 0$$
$$\iff \alpha(a) = \alpha(b)$$

												,														
									¢	⇒	ō	ζ (α	x +	I)	=	2	(b	ŧΙ)							_
	on	to	· 1	Чu	. <i>e</i> 1	m	d.	ŧ	aKe	: a	nu	ú	= 0	x (a	2)	fo	y s	ome	٥	ER	an	d				
																1.										
						2	(a 1	ΗI) =	d (a)	= U	L		-											_
	1-	- 1	:	2	(a	+ T) =	- -	Т(b	+1	C)	=		> ,	1(0	():	= X	(6)								-
	-		•		•																					
												=	=;)	d (1	a) -	· o⁄ (b)	= 0							
												=	∌	0	(o	(- E	,) =	0								
												=	7		a-1	0 E	L	=	Kerd	ά	_					_
												=	€	a	+1	=	b-	١I								
		•																								
<u>homo</u>	MOT	<u>rph</u>	<u>i</u> 51	<u>v</u> :	le	t d	at.	L,	b †	I	E	K/.	Ŀ	1	her	۱								 		_
			ע	((a	+I	:)	+ (6+:	I)) =	ح	((a f	6)	1]	E)										
										=	α	(a)	f b)	_	-								 		_
										=	٨	(a))+	٤	(b)											
										Ξ	2	(a-	ΗĪ) 1	- X	(6	+1)								_
			٨	((a	+1	:);	x (6 +:	I)) =	: ע	((a x	(6)	1	I)										
										_	α	10									_					_
											X	\u	XD													-
										=	لم	(a) X	لم	(b)											
										-	7	(^	<u>ι</u> τ	•	, -	1)]	r)								_
										-	R	ία.	T L	<u> </u>	n d	10) Т.	L /								-
																										1
															_											_
																	_									

9. Examples of Factor Rings



Proposition

Let R and J be rings. Then

(RxS, +, x) is a ring with addition and multiplication defined above

$$\begin{aligned} \text{Claim}: \ I \subseteq \mathbb{R} \times \mathcal{S} \ ; \ I = \{(0,s) \text{ is an ideal}\} \\ \text{i)} \ (0,0) \in I \\ \text{ii)} \ (0,s) + (0,s') = (0,s+s') \in I \\ \text{iii)} \ (0,s) \times (a,b) = (0,sb) \in I \\ \text{Claim}: \ \mathbb{R} \times \mathcal{S} \cong \mathbb{R} \\ I \\ \hline Define \ map \\ \alpha : \mathbb{R} \times \mathcal{S} \longrightarrow \mathbb{R} \\ (r,s) \longmapsto \gamma \\ homomorphism: \ \alpha ((r,s)(r',s')) = \alpha((rr',ss')) \\ &= rr' \\ = \alpha((r,s))\alpha((r',s')) \\ Onto: \ \forall r \in \mathbb{R}, \exists (r,0) \in \mathbb{R} \times \mathcal{S} \text{ s.t} \\ \alpha((r,0)) = r \\ (r,s) \in \text{Ker} \ll \iff \alpha((r,s)) = O \\ \iff r = O \\ \iff (r,s) = (0,s) \\ \end{aligned}$$
Caution: Let \mathbb{R} be any ring and $I \subseteq \mathbb{R}$, be any ideal.
In general, it is not true then $\binom{\mathbb{R}_{I}}{I} \times I \stackrel{\text{```}}{=} \mathbb{R} \end{aligned}$

Example:
$$R = \mathbb{Z}$$
, $I = 2\mathbb{Z}$
 $R_{f} = \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_{z} = \{[0], [1]\}$
Then $(\mathbb{Z}_{2} \times \mathbb{Z}) \not\cong \mathbb{Z}$
Juppose $a \in (\mathbb{Z}_{2} \times 2\mathbb{Z})$, $a \neq 0$
Observe
 $([1], 0) \in \mathbb{Z}_{2} \times 2\mathbb{Z} \implies ([1], 0) + ([1], 0) = ([0], 0)$
Therefore $a + a = 0$
if \exists an isomorphism, $d: \mathbb{Z}_{2} \times 2\mathbb{Z} \longrightarrow \mathbb{Z}$
 $a(a) \in \mathbb{Z}$, $a(a) \neq 0$
 $d(a + a) = a(a) + d(a) = 0$

(3) Let

$$T_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}$$

10. Binomial Theorem

Let R be any ring. Then in general
$$Z \leq R$$

In particular for $Z \in Z$ and $r \in R$, we do not know (yet) what is $Z \cdot r$
 $r \in R$, $2r = r + r$
We can still define $Z \cdot r$ $\forall Z \in Z$ $\forall r \in R$ "by hand"
Case 1: $\forall r \in R$, if $Z = 0$, $0 \cdot r = 0 \in R$
Case 2: $Z \in Z_{>0}$, $Zr = r + r + \cdots + r$:= Zr
Case 3: $Z \in Z_{<0}$, $(-Z) > 0 \implies (-Z)r \in R$
case 2
 $-Z(r) = Z(-a) = (-a) + \cdots + (-a) = -(Za)$
 $Zr = -(-Zr)$
Example: $-2r = -r - r = (-2)r = (-2r)$

Proposition

For any
$$z_1 w \in \mathbb{Z}$$
 and $a_1 b \in \mathbb{R}$
i) $(z+w)a = za + wa$
ii) $(zw)a = z(wa)$
iii) $z(a+b) = za + zb$
iv) $(za)(wb) = (zw)(ab)$

<u>Proof</u>:

By direct verification using new multiplication rule

$$\begin{array}{c}
X: \mathbb{Z} \times \mathbb{R} \longrightarrow \mathbb{R} \\
X: (\mathbb{Z}, a) \longmapsto \mathbb{Z} a \\
iii) 1) \mathbb{Z} = 0, \ 0(a+b) = 0 = 0a + 0b = 0 + 0 = 0 \in \mathbb{R} \\
2) \mathbb{Z} \in \mathbb{Z}_{>0} \mathbb{Z}(a+b) = (a+b) + \cdots + (a+b) \\
= a + \cdots + a + b + \cdots + b \qquad Abelian \\
\mathbb{Z} = \mathbb{Z} a + \mathbb{Z} b \qquad \mathbb{Z}$$

3)
$$Z \in \mathbb{Z}_{\leq 0}$$
: By the fact that $-(u+v) = (-u) + (-v)$ in an Abelian group
 $Z(a+b) = -((-2)(a+b)) = -(-(Za) + (-(Zb)) = Za + Zb)$
 $Z(a+b) = -((a+b) + \dots + (a+b))$ $-a - \dots - a + (-b - \dots - b)$
 $-Z + imes$
 $-(a+b) - \dots - (a+b)$
 $Z = -(a+b) - \dots - (a+b)$

Proposition

$$\forall$$
 ring homomorphism; $d: R \longrightarrow S$
 $a(za) = za(a) \qquad \forall z \in \mathbb{Z} \quad \forall a \in R$

<u>**Proof**</u>: Proof is a consequence of Group Theory

Binomial Theorem

For any neN

$$\binom{n}{K} = \frac{n!}{(n-k)!K!}, \quad K = 0, 1, ..., n$$

Theorem Binomial Theorem

Let a, b \in R and n \in N. Put $a^n b^o = a^n$ and $a^o b^n = b^n$. Then

$$(a+b)^{n} = \sum_{K=0}^{n} \binom{n}{K} a^{n-k} b^{K}$$

<u>Proof</u>:(By induction):

Base case: n = 1

$$(a+b)^{1} = a+b = a'b^{0} + a^{0}b' = \begin{pmatrix} 1 \\ 0 \end{pmatrix} a^{1}b^{0} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} a^{0}b^{1} = a+b$$

Inductive hypothesis: Suppose property true for neN

$$(a+b)^n = \sum_{K=0}^n \binom{n}{K} a^{N-K} b^K$$

<u>Inductive step</u>: Showing that $\forall n \in \mathbb{N}$, $P(n) \Longrightarrow P(n+1)$

$$(a+b)^{n+1} = (a+b)(a+b)^{n} = (a+b)\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} a^{n+1-k} b^{k} + \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k+1}$$

we used equality
$$ab = ba$$
.

$$= \begin{pmatrix} n \\ 0 \end{pmatrix} a^{n+1} \begin{pmatrix} 0 \\ k \end{pmatrix} + \sum_{k=1}^{n} \begin{pmatrix} n \\ k \end{pmatrix} a^{n+1-k} \begin{pmatrix} k \\ k \end{pmatrix} + \sum_{k=0}^{n-1} \begin{pmatrix} n \\ k \end{pmatrix} a^{n-k} \begin{pmatrix} k+1 \\ k \end{pmatrix} + \sum_{k=0}^{n-1} \begin{pmatrix} n \\ k \end{pmatrix} a^{n-k} \begin{pmatrix} k \\ k \end{pmatrix} + \sum_{k=0}^{n-1} \begin{pmatrix} n \\ k \end{pmatrix} a^{n-k} \begin{pmatrix} k \\ k \end{pmatrix} + \sum_{k=0}^{n-1} \begin{pmatrix} n \\ k \end{pmatrix} a^{n-k} \begin{pmatrix} k \\ k \end{pmatrix} + \sum_{k=0}^{n-1} \begin{pmatrix} n \\ k \end{pmatrix} a^{n-k} \begin{pmatrix}$$

shifting index
$$= \begin{pmatrix} n \\ 0 \end{pmatrix} a^{\pm 1} b^{0} + \sum_{k=1}^{n} \begin{pmatrix} n \\ k \end{pmatrix} a^{\pm 1-k} \frac{k}{k-1} a^{-1-k} b^{k} (k+1=k^{1})$$

$$= \begin{pmatrix} n \\ 0 \end{pmatrix}^{n+1} \begin{pmatrix} 0 \\ k \end{pmatrix}^{n} + \sum_{k=1}^{n} \left[\begin{pmatrix} n \\ k \end{pmatrix}^{n} + \begin{pmatrix} n \\ k-1 \end{pmatrix} \right]^{n+1} \begin{pmatrix} n \\ k \end{pmatrix}^{n+1} + \begin{pmatrix} n \\ k \end{pmatrix}^{n} \begin{pmatrix} 0 \\ k \end{pmatrix}^{n+1} + \begin{pmatrix} n \\ k \end{pmatrix}^{n} + \begin{pmatrix} n$$

 $+ \begin{pmatrix} n \\ n \end{pmatrix} a b$

 $+ \begin{pmatrix} n \\ n \end{pmatrix} a b^{n+1}$

Observe $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$

$$\binom{n}{n} = \binom{n}{0} = \binom{n+1}{0} = \binom{n+1}{n+1} = 1$$

Hence we get

$$(a+b)^{n+1} = \begin{pmatrix} n+1 \\ 0 \end{pmatrix}^{n+1} a b + \sum_{k=1}^{n} \begin{pmatrix} n+1 \\ k \end{pmatrix}^{n+1-k} a^{k} + \begin{pmatrix} n+1 \\ n+1 \end{pmatrix}^{n} a^{k-1} b^{k} + \begin{pmatrix} n+1 \\ n+1 \end{pmatrix}^{n} a^{k-1} b^{k-1} + \begin{pmatrix} n+1 \\ n+1 \end{pmatrix}^{n} a^{k-1} + \begin{pmatrix} n+1 \\ n$$

$$\implies (a+b) = \sum_{\substack{k=0 \\ k \neq 0}}^{n+1} \binom{n+1}{k} a b$$

11. Characteristics of Rings and Fields

Let R be any ring with identity $1 \in R$. Then consider the subset

$$C = \{ 21 : 2 \in \mathbb{Z} \} = \{ \dots, -(2 \cdot 1), -1, 0, 1, 2 \cdot 1, 3 \cdot 1, \dots \}$$

List might have repeats. For example $R = Z_2$

If R = R or $C \implies C = \mathbb{Z}$

Proposition

Let R be any ring with identity 1 ER

C⊆R is a subring

Proof:

i) 0 < C

¥ Z·1, w·1 where Z, w∈Z

 $(2) - (2) = (-2) 1 \in C$

 $iii) \quad 2 \cdot |+ w \cdot | = (2 + w) \quad 1 \in C$

 $(21)(w1) = (2w)(1.1) = (2w)(1) \in C$

Characteristics

Definition

Let R be an integral domain. The characteristic of R is

char $R = \begin{cases} ord 1 in C if this order is finite \\ 0 if ord 1 = \infty \end{cases}$

Meaning ord 1 in C as an additive group

Examples of Characteristics

1) $R = \mathbb{Z}$; $C = \mathbb{Z}$ ord $1 = \text{ord } 1 = \infty \implies \text{char } \mathbb{Z} = 0$

Similarly char
$$\mathbb{R} = 0$$
; char $\mathbb{C} = 0$, char $\mathbb{Q} = 0$
2) $\mathbb{R} = \mathbb{Z}_2$; -[1], [0], [1], [2] \implies ord [1] = ord [1] = ord [1] = 2
[1] [0] \mathbb{Z}_2
char $\mathbb{Z}_2 = 2$

Theorem

Let R be an integral domain $(1 \in R)$. Then

char R=0 or char R=p, p is prime

<u>Proof</u>: (contradiction)

Consider $C = \{ z \mid z \in \mathbb{Z} \}$ an additive group

ord 1 = $\begin{cases} \infty \implies \text{char } R = 0 \\ \text{some natural number} \end{cases}$

Suppose ord 1 = mn where m, n EN (not prime).

We will get a contradiction. By defn of order

 $0 = (mn)1 = (m1)(n1) \implies m1 = 0$ or n1 = 0 as R is an integral domain

 $\underline{\text{Case 1}}: \text{ m1=0} \implies 1 \cdots 1 = 0$

By definition of order, the minimum number of times k=mn

 $\underbrace{1+1+\cdots+1}_{k \text{ fimes}} = 0$

m times

is mn. But ord(1) = mn and m≤n×

But ord1=mn and m≤mn => m=mn

Similarly we get n1=0 \Longrightarrow n=mn

⇒ m=1

This means ord, 1 cannot be factorized as mn unless m=1 or n=1

⇒ n=1

 \implies ord_c1 is prime

Now let
$$2e\mathbb{Z}$$
 and $be\mathbb{R}$. By using $(2a)(wb) = (2w)(ab)$ with $a=1e\mathbb{R}$, $w=1e\mathbb{Z}$
 $(21)b = (21)(1b) = 2(1b) = 2b$
Let $b\neq 0$, char $\mathbb{R}=0$, then
 $\mathbb{Z}b=0 \iff (21)b=0 \iff 21=0 \iff 2=0$
If char $\mathbb{R}=p$, then
 $2b=0 \iff (21)b=0 \iff 21=0 \iff p|\mathbb{Z}$
Important Technique
In some mothematical proofs have this mathematical structure
Ne need to show $g=0$
Typically we prove that $\mathbb{K}_q=0$ for some $\mathbb{K}e\mathbb{Z}$ and $\mathbb{K}\neq 0$
Juppose that $\mathbb{K}=p$
 $q\in \mathbb{F}$, char $\mathbb{F}=p$
 $field$
Ne get
 $pq=0 \iff (p,1)q=0$
Personal Explanation
 \mathbb{R} be any integral domain, $1\in\mathbb{R}$
 (\mathbb{R}, t) is on Abelian, group
 $char \mathbb{R} = \begin{cases} ord(1) \\ \infty \quad \text{if } ord(1)=\infty \end{cases}$
 $ord(1)$ is the least $n\in\mathbb{N}$ so an additive group
 $ord(1)=\infty$ if $n.1\neq 0$ ViceN
 $simile to a^{n}c (G, 4)$

12. Rings of Polynomials

														v																		-
_								1	1.		•		•					4	. 6	7		~					_		 	 _		
	Let	: ł	<	De	any	6	omi	nut	atı	ve	۲1	١q	Wi	th	īd	lent	ity		€Ķ	١,	17	-0								 		
					J							J					J															
	1 of	. n	r h	0 0	fo	1 m /	al	(ho	(Y 🖌	R)																				
				εv			× I	J	100	,	~ }																					_
								-						r															 	 		
	A	ρο	lyr	om	ial '	íη	χ	ove	r K	is	a	foi	ima	l e;	(pri	essi	on															
		•)			•						1			1																	
									-)		+ (ົ້	L		1	<u> </u>	n															
									Ţ-	0 0	Т	u 13	. т	• • •	1 (unu	4															
							,	1																						 		
	whe	re	n	έN	⁰ =	N	Uł	04	a	nd	an.		an	εR																		
											01	'																				
						•	11.			c (·	•	1	. r	j														 				_
					ai	15	the) - Q,	t+1(ien	t	0†	X																		
													'																			
	Con	VP	٨t	ion	s																											
																																_
	$\langle \cdot \rangle$		0			1	1																									_
	(a)	X	=	1	an	d .	χ_=	X																						 		
	'h)	\ (ran	M		to	YM (^	,		:th	n.	-1	1	1	Δ.		(!)	•	4)											
		UV.	E	un	, IAI	"	65	,	u u	.r	W	1.11	u	- (<i>,</i>	``	V	LUE	11"	-161	11/											_
		_										2																		 		
		Fo	1 6	2Xai	npl	e :	1	f (X,	+ .	2x	Ξ	+	23	Ĺ																	
		_			1			!																								
1	7	46			rev	.1		1.,1	_ ~	1																						_
	.cj	We	2 (100.	rev	at	e.	TΧ	= J	.							-												 	 _		
(d)	Α	D	du	nom	ial	of	1	orn	h .	ax) =	10	= 0			call	6	a (045	tan	F.	ممار		4.0							
			Г	J			Ţ,	1		v	~~		~1	- 0		1.5	LUII	eu	u c	0113	1.01		puly	1.01	"LIU							
	()	1			_		ſ		. (-										_		 	 _		_
	(4)	60	nsi	dei	r 2	ρ	plyr	N0M	ials	5																						
						'	J																									
									- ۲	- 1	,† (י ו	T		1	h	n															
				-					1.	, v		12	. Т			n																_
			_	_																									 	 		
									9 :	= b,	, +	b, 3	ί+	• • •	+	bJ	("``															
									J																							
	1	l			- 10	•	(-		F	•	λ.	n	- 6		~	- 6				^	- L											
		w ľ	er	"	1=N	•	J -	ſ	1	-	7	^и 0	- D	Dı	u	- (47	• •	•••	u٧	- 0	'n				_					-	
															-															 		
		W	her		17m	۱.	ad	plu	(0	nve	nti	٥N	(b																			
				1																												
			-			-	_ (1	1.		1	_2	1		1	1	M	ŀ.	Δ	M+			17	ر ا	۱							
						g	= D	0 1	D,	X 1	ŀ Β,	,X	4	••	+	pW	J	+	Uj	(+	•••	1 ()X					 	 		
						-																										
				=	\Rightarrow		5	=	0		•••	b.	= 0																			
							'm i	1	1		1	۳																				_
		1.	. 1	-	,				-		,			1.	1	-	•	-				-				_					-	
		Ji	mil	ay	foi	r y	17r	N.	'l h	en	70	Y (eqn	ali	ty,	We	? h	ave														
		! r		N >	n	L	= 1	E) n	-	h	n	-	h		. n	-	h	h	-	=	· =	h	= 0)						
		'1	- '	~~ _	7 L	1	J		-		0-	00	, u	1 -	0	1	N I	۳.	× n ,	vn	+1			ν n		·		 				
						1	-	,				,			-													 				
		if	•	12	۱	1:	= 9	Ę		2 0	= ₀	bo.	a	=	b	• • • •	an	=b	n .	۵.	=	••••	= 0	ln 7	- 0							
							ر _ا				×	-1		•	'				''	141	†1			••								
																1																
_			-	-			-	-							-		-	-				-									-	
- I			1	1	1		1	1							1	1	1	1				1										

Ring of Polynomials

Definition

```
Let R be any commutative ring with identity IER, 170
```

```
Denote the set of all polynomials over R by
```

r[x]

Define addition and multiplication

 $\frac{\text{Addition}}{\forall f, g \in R[x]}$

 $f = a_0 + a_1 x + \dots + a_n x^n$ $g = b_0 + b_1 x + \dots + b_m x^n$

$$f + g = c_0 + c_1 x + \dots + c_2 x^2 , \quad l = \max\{n, m\}$$

$$\begin{cases} a_i + b_i & \text{if } i \le \min\{m, n\} \\ c_i = \begin{cases} a_i & \text{if } m < i \le n \\ b_i & \text{if } n < i \le m \end{cases} \quad (c_0 = a_0 + b_0)$$

By convention (e), assume n=m. If $m \neq n$, then append 0 terms to the "shorter polynomial $f + g = (a_0 + b_0)x^0 + (a_1 + b_1)x^1 + \cdots + (a_n + b_n)x^n$

<u>Multiplication</u>: (x)

$$f x g = (a_0 + a_1 x + \dots + a_n x^n) x (b_0 + b_1 x + \dots + b_m x^m) = d_0 + d_1 x + \dots + d_{n+m} x^{n+m}$$

where for O≤K≤m+n

$$d_{k} = \sum_{\substack{i,j \\ i+j=k}} a_{i}b_{j}$$

Note that

$$f \times g = (a_0 x^\circ + a_1 x^\circ + \dots + a_n x^\circ) (b_0 x^\circ + b_1 x^\circ + \dots + b_n x^n)$$

= $a_0 b_0 x^\circ + (a_0 b_1 + a_1 b_0) x^\circ + \dots + a_n b_m x^{n+m}$

Proposition, Ring of Polynomials

Let R be any commutative ring with identity $1 \in R$, $1 \neq 0$

Then

$$(R[x], +, x)$$

is a commutative ring with an identity.

<u>Proof</u>: Fill later

Corollary

The zero and identity of R[x] is

i) Zero: O polynomial $f = 0 = 0x^0 = 0.1$

ii) Identity: Constant polynomial $f = 1 = 1 \cdot x^{\circ}$

Proof:

i) Consider $f = 0 \cdot x^{\circ} = 0 \cdot 1 = 0$

This is the Zero element of R[x]

For any geR[I]

 $0 \cdot g = d_0 x^0 + \cdots + d_m x^m$

 $d_{K} = \sum_{\substack{i,j \\ i+j=k}} a_{i} b_{j} = 0 b_{K} \quad i=0 \text{ as } f = 0 \text{ polynomial, } 1 \text{ term}$

$$\implies$$
 0. q = 0x^o + + 0xⁿ = 0x^o

ii) Similarly f=1.x°=1=1.1 is the identity element of R[x]

For any
$$g \in R[x]$$
,
 $1 \cdot g = d_0 x^0 + \cdots + d_n x^n$
 $d_k = \sum_{\substack{i,j \\ i \neq j \\ i \neq j \\ i \neq j \\ k}} a_i b_j = 1 b_k$ $i=0$ as $f=1$ polynomial, 1 term
 $i = b_k$ $0 \in R$

 $1 \cdot q = b_x + \cdots + b_x = a$

Degree of a polynomial

Let $f \neq 0$, $f \in R[x]$ a non-zero polynomial. Then for some $n \ge 0$,

$$f = a_0 + a_1 x + \cdots + a_n x^n$$

where atleast one of the coefficients is O

By convention (b) $a_n \neq 0$.

Definition Degree of Polynomial

$$f = a_0 + a_1 x + \cdots + a_n x$$

with an \$0. Then degree of polynomial is

Theorem

<u>Proof:</u>

$$f = a_0 + \cdots + a_n x^n$$
 and $g = b_0 + \cdots + b_m x^n$

where
$$a_n \neq 0$$
 and $b_m \neq 0$. Here

By definition

$$a_n \neq 0$$
 and $b_m \neq 0 \implies a_n b_m \neq 0$ since R is an ID, $2D(R) = \{0\}$

If
$$a_n b_m = 0 \implies a_n = 0$$
 or $b_m = 0 \implies a_n b_m \neq 0$

Therefore
$$f \times g \neq 0$$
 and $deg(fg) = n + m = deg(f) + deg(g)$

It also follows that $ZD(R[x]) = \{0\} \implies R[x]$ is an integral domain.

Non-Example

Theorem fails if R is NOT an integral domain.

Consider $R = \mathbb{Z}/4\mathbb{Z}$, [2] $\in R$ and [2] \times [2] = [4] = 0

$$f = [1] + [2] x deg f = 1$$

$$f^{2} = ([1] + [2]x)([1] + [2]x) = [1 + [4]x + [4]x^{2} = [1]$$

$$deqf^2 = 0 \neq 2 = deqf + deqf$$

Moreover

$$f \in U(R[x])$$
. But $f \notin R \Longrightarrow f \notin U(R)$

Corollary

Suppose R is an integral domain

Then units are

U(R[x]) = U(R)

<u> Proof</u>:

$$(2)$$
: Take any a \in U(R). Then a has an inverse, say b such that

ab=ba=1

But both a and b are constant polynomials. So

$$V(R) \leq V(R[x])$$

 (\leq) : To prove $U(R[x]) \subseteq U(R)$, take any $f \in U([R])$.

Hence
$$\exists g \in R[x] \ s \cdot t \ f \cdot g = 1 \neq 0 \implies f \neq 0, g \neq 0 \qquad R[x] \ is an ideal$$

$$0 = \deg f g = \deg f + \deg g$$
$$\implies \deg f = \deg g = 0$$

$$\rightarrow$$
 ueg $f = ueg g = 0$

⇒ f is constant polynomial

⇒ fev(r)

13. Division Algorithm for Polynomials Let F be any field. Jo F is a commutative ring with identity 1, U(F) = F\{0}

Theorem

Let
$$R = F$$
 be any field. Let $f, g \in F[x]$ where $g \neq 0$

Then
$$\exists$$
 unique $q, r \in F[x]$ such that $r=0$ or $r \neq 0$

$$f = gq + r$$
 $deg(r) < deg g$

Proof.

1) <u>Proof of existence</u>: a) If deg g=0, then g is a constant polynomial $g \neq 0$ We know that $U(F) = F \setminus \{0\} \implies \exists g^{-1} \text{ another constant polynomial and}$ $f = (g^{-1}g)f = g(g^{-1}f) = gq + 0$

b) Suppose degg=m>0. Let
$$L:=\{f-gq:q\in F[x]\}$$

i) Suppose $0 \in L$. Then $\exists q \in F[x] \ s.t \ f-gq=0 \iff f=gq+i$
ii) Suppose $0 \notin L$. Then min $\{degs|s \in L\} := K$
 $\underset{t}{\underbrace{t}}$

Pick any
$$s = rel$$
 such that dear = k

Then
$$r=f-gq$$
 for some $q \in F[x] \Longrightarrow f=gq+r$

Write
$$g = b_0 + b_1 x + \dots + b_m x^m$$
 for some $m \in \mathbb{Z}_{\geq 0}$, assume $b_m \neq 0$

$$Y = C_0 + C_1 x + \dots + C_K x$$
 where $C_K \neq 0$

Suppose K2m, and get a contradiction. Consider deg < m+k-m

$$C_k b_m^{-1} x^{k-m} \in F[x]$$
 degrees $\leq k$ deg $\leq m$

Consider $S = r - C_k b_m x^{k-m} g = (c_0 + c_1 x + \dots + c_k x^k) - C_k b_m x^{k-m} (b_0 + b_1 x + \dots + b_m x^k)$

0

cance

Then either s=0 or s≠0. But

deg sck 💥

A contradiction : 0 \$ L

$$r \in L \implies Y = f - gq \quad for \quad some \quad q \in F[x]$$

$$L \Rightarrow S = Y - C_k \quad b_m \quad x^{-m} \quad g = \quad f - gq \quad - \quad C_k \quad b_m \quad x^{-m} \quad g$$

$$= \quad f - (g + C_k \quad b_m \quad x^{-m}) \quad g \in L$$

But $0 \notin L$ so $s \notin 0$, remains deg s < k and $s \notin L$, but k is minimal $\underset{of \ L}{\times}$ contradicts definition. This means that k 2m, not possible $\implies k < m_{n}$.

0

2) <u>Uniqueness</u>

Suppose
$$f = gq + r$$
 where $r=0$ or $(r\neq 0 \text{ and } deg r < deg g)$
 $f = gq' + r'$ where $r'=0$ or $(r'\neq 0 \text{ and } deg r' < deg g')$
Let us show that then $r=r'$ and $q=q'$

$$0 = gq + r - gq' - r' \iff r - r' = g(q - q')$$

Suppose that r'-r = 0. Then deg (r - r') < deg g
i) r = 0, r' = 0 deg(r'-r) = deg(-r) < deg g
ii) r = 0, r' = 0 deg(r'-r) = deg(r') < deg g
iii) r = 0, r' = 0 deg(r'-r) = deg(r') < deg g
deg g > deg(r'-r) = deg(g(q - q')) = deg g + deg(q - q') X

So
$$r'-r = 0 \iff r'=r$$

Then $g(q-q')=0$. But F is a field \implies F is an integral domain
Then $F[x]$ has property $2D(F[x])=\{0\}$
So $g_{\neq 0}(q-q')=0 \implies q-q'=0 \iff q=q'$

Example of a field F

$$F = \mathbb{Z}/p\mathbb{Z} \text{ where } p \text{ is a prime number } (p \in \mathbb{Z})$$
Claim: F is a field, $F = \{[0], [1], \dots, [p-1]\}$
• F is commutative
• F = 1 identity
• F is finite, commutative ring
 $U(F) = F \setminus \{0\} \iff \mathbb{Z}D(F) = \{0\}$
Take any class $[K]$ which is a zero-divisor in $\mathbb{Z}/p\mathbb{Z}$
 $K = 0, 1, \dots, p-1$; $l = 0, 1, \dots, p-1$
 $[K][L] = [0] \iff kL = pm$ for some $m = 0, 1, 2, \dots$
 $KL = 0, p, 2p, \dots, K, K < p$ X
 $KL = 0$ in \mathbb{Z}
So k is a zero divisor iff $K = 0$
Example of Division Algorithm
 $F = \mathbb{Z}/5\mathbb{Z}$
 $f = [1] x^5 + [3] x^4 + [2] x^2 + [4]$
 $g = [2] x^3 + [1]$
Solve $f = gg + v$, where either $r = 0, v \neq 0$ deg $(r) < deg g = 2$
 $\frac{3tep \ 1}{5} = deg f = deg(gg + r) \implies deg(gg) = 5$
 $\implies deg(g) + deg(g) = 5$
 $\implies deg(g) + deg(g) = 5$
 $\implies deg(g) = 3$
 $\left(\begin{array}{c} q = ax^3 + bx^2 + cx + d & where & a, b, c, d \in \mathbb{Z}/5\mathbb{Z} \\ r = wx + v & where & u, v \in \mathbb{Z}/5\mathbb{Z} \end{array}\right)$

 $\frac{\text{step 2}}{2} \left[1\right] x^{5} + \left[3\right] x^{4} + \left[2\right] x^{2} + \left[4\right] = \left(\left[2\right] x^{2} + \left[1\right]\right) \left(ax^{3} + bx^{2} + cx + d\right) + ux + v$ $= \left[2\right] ax^{5} + \left[2\right] bx^{4} + \left(a + \left[2\right] c\right) x^{3} + \left(b + \left[2\right] d\right) x^{2} + \left(c + u\right) x$

+ (d+v)x°

<u>Step 3</u>: Equating co-efficients

i) [1]=[2] a	[3] = a	a = [3]
ii) [3]=[2]b	[4] = 6	b = [b]
iii) [0] = a + [2]c	[0]= [3]a+c	c = [1]
iv) [2] = b+[2]d	[1] = [3]b + d	d = [4]
v) [0] = C+ N	[0]= c+n	n=[4]
vi) [4] = d + v	[4]= d+v	 [v]=[0]

Observe

 $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 2 \end{bmatrix}^{-1} \begin{bmatrix} 3 \end{bmatrix}$

14. Polynomial Functions

Let R be any commutative ring with identity IER.

Let reparange over R and fer[x]. Then

$$f = a_0 x^0 + a_1 x^1 + \dots + a_n x^n$$
, where $n \in \mathbb{N} \cup \{0\}$

 $a_0, a_1, \dots, a_n \in \mathbb{R}$ are coefficients and x only a formal symbol.

Define polynomial function f(r) with values in R by

$$f(r) = a_0 1 + a_1 r + a_2 r^2 + \dots + a_n r^n$$
 $\forall reR$

Then we have a correspondence

<u>Remark</u>: if R=R, C, this correspondence is 1.1

 $f(r) = g(r) \implies f = g$ equality of polynomials

 $\implies f \mapsto f(r) \quad 1.1$

NOT true for an arbitrary ring or a field

Non-Example:

$$R = \mathbb{Z}/2\mathbb{Z} = \{[0], [1]\}$$

 $g = [1] + x + x^{2} + [0]x^{3} + x^{4}$ f = as elements of R[x] Take f = [1] + x

 $f \mapsto f(I): f([0]) = [I], f([I]) = [0]$ $g \mapsto g(r) \quad g([0]) = [1], \quad g([1]) = [0]$

 \Rightarrow f(r)= g(r) \forall reR

15. Principal Ideal Domain Let R be any commutative ring with an identity 1. Lemma Let R be any commutative ring with 1 ER i) For any given a e R, consider the set aR={ar reR} Then aR is an ideal containing aR ii) ar is the smallest ideal containing a Proof: i) a) $0 = a 0 \in \mathbb{R}$ b) $ar + as = a(r+s) \in aR$ c) - ay = $a(-r) \in aR$ d) $ar.s = a(rs) \in aR$ a=a1eaR ii) Take any ideal ISR containing the given aER We need to show aR SI We know ∀a∈I, ∀reR, areI ⇒ aR≤I Definition, Principal ideal The ideal $aR = \{ar : r \in R\}$ is called principal ideal (generated element a e R) Examples of Principal ideals 1) {03 is a principal ideal of any ring R

{0]= {0x | x e R} ; 0 e R

2) For R=Z, nZ is a principal ideal for any new generated by a=n

Principal Ideal Domain

Definition Principal Ideal Domain

A principal ideal domain (PID) is an integral domain (ID) where every ideal is principal

Proposition

The ring Z is a principal ideal domain

<u>Proof</u>:

We know that Z is an ID. We need to show that every ideal of Z is principal (1) $\{0\} \in Z$ is principal as in example (1) above

(2) Let $J \neq \{0\}$ be any non-zero ideal of Z. We find new such that

S=nℤ

Take any $a \neq 0$, $a \in S \implies -a \in S$, hence $S \cap \mathbb{N} \neq \emptyset$.

Let n be the minimal natural number in S (n>0)

 $n = min\{ses|s>0\} es$

(S): Showing $n \mathbb{Z} \in S$

Observe by property of ideals

 $nzes \quad \forall zeZ \implies nZ \leq s$

(2): Remain to prove $n\mathbb{Z}$ 25. Take any $u\in S\subseteq \mathbb{Z}$. Then

u=nq+r where 0≤r<n

⇒ r=u-ng, where ues and nges property of ideals

if r>0 and $r=u-nq < n \in S$, we contradict minimality of n

⇒ γ=0

⇒ uenZ

Let F be any field. Then, the ring

is a principal ideal domain

Proof:

We already know that F[x] is an integral domain. Need to show every ideal of F[x] is principal.

- {0} ≤ F[x] is principal
- (2) Juppose I\$ {0} is any non-zero ideal of F[x].

F[x]

- Let $g \in I$ be such that $g \neq O$ and deg g is minimal for all elements of I.
- we will show

I=gF[x]

(2): By definition of ideal,

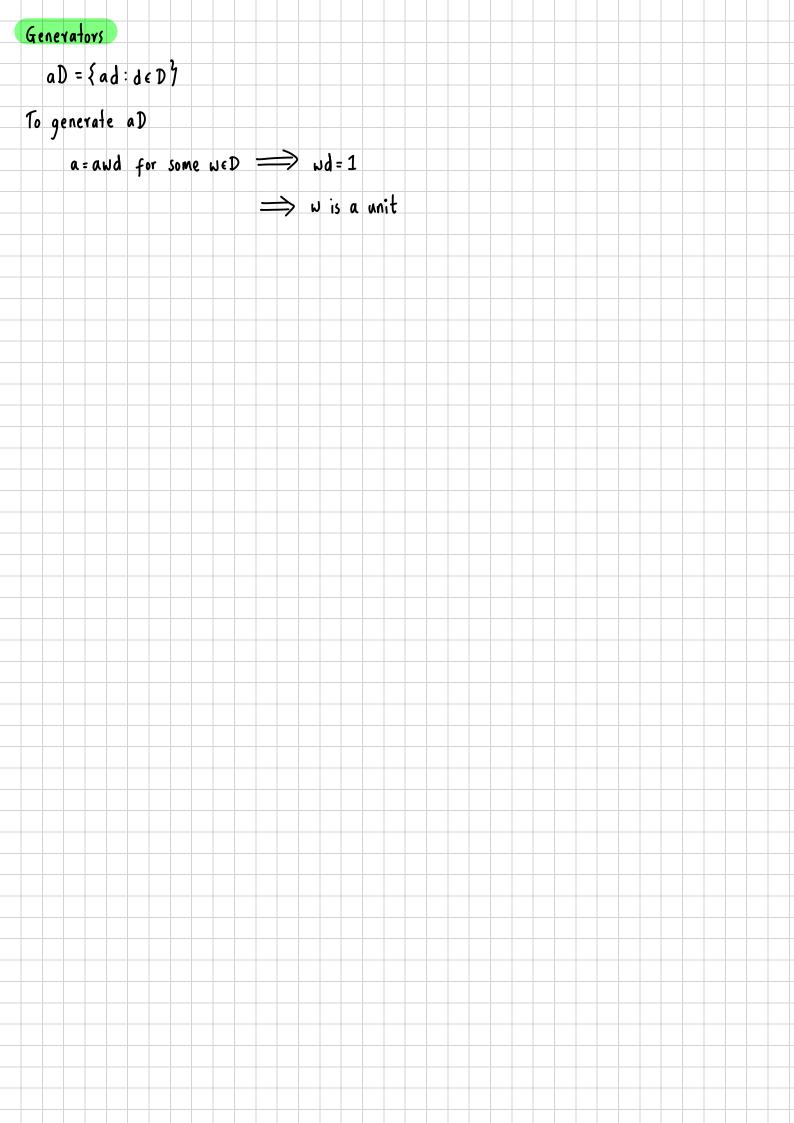
gF[x] ≤ I (gf e I ∀f e F[x])

 (\leq) : Suppose $f \in I$. By division algorithm for F[x]

$$f = gq + \gamma \quad q_1 \gamma \in F[x] \quad \gamma = 0 \text{ or } \gamma \neq 0$$

$$\implies r=0$$
$$\implies f \in gF[x]$$

$$\Rightarrow$$
 I $\leq q F[x]$



16. Divisibility of Integral Domains

Let D denote integra	domain
i) D is commutative	
ii) 1 e D	
:::) ZD(D) = {0}	
$\prod_{i=1}^{n} ZD(D) = \{0\}$	
For example, D=Z, Z	[[d], F, F[x], F a field
	5
	square-free
Divisibility	
Definition	
Vetinition	
We say that be D	divides a cD if
,	c for some ceD
	3 tot some cer
denoted bla	
Fax areada : (h=0	then a=Oc=O \implies b=O divides only a=O
<u>Remark</u> : Let beu(D)	. Then, VaeD, we have
$a = a \cdot =$	a(b'b) = (ab')b
La particular, if	$D = F$ is a field and $b \neq 0$, then $b \in U(F)$
⇒ so all non	-zero elements of a field divide every element
Irreducibility and Prim	
Definition	
i) An alamant ac	D is irreducible if $a \neq 0$, $a \notin U(D)$ and if for any b, $c \in D$,
a= bc	$\implies b \in U(D) \text{or} c \in U(D)$
ii) An alamant ac	D is prime if p = 0, p = U(D) and if for some a, b = D
	plab 🤿 pla ov plb
iii) Flomonts a.hei	D are associates if a=bu=ub for some ue U(D)
	We write a~b

Example

D = Z, Recall $U(Z) = \{+1, -1\}$ iii) and in $\mathbb{Z} \iff |a| = |b|$ ii) An element $p \in \mathbb{Z}$ is prime $\iff p \neq 0, p \neq 1, -1$ and plab 🔿 pla ov plb But plab ⇔ [pl lalb] Then pla or plb ⇒ [p]|lal or [p]||b| So Iplis a prime number p ∈ Z is "prime" element 👄 [p] is a prime number i) By defn, a $\in \mathbb{Z}$ is irreducible if $a \neq 0$; $a \neq 1, -1$ and if a=bc for some b, c e Z ⇒ b=±| or c=±| $a=bc \Longrightarrow |a|=|bc|=|b||c| \Longrightarrow |a|$ is a prime number again. For $D = \mathbb{Z}$, {irreducible elements} = {prime elements} (The equality does not hold in general) Non-Example $D = \mathbb{Z}[\sqrt{-3}]: d = -3$ a=2 irreducible, not prime Proposition Let D be any integral domain. If p∈D is prime ⇒ p is irreducible

Proof:

Let
$$p \in D$$
 be prime. So $p \neq 0$, $p \notin U(D)$ by definition

Suppose p = bc. Then $p = 1 \cdot bc \implies p \mid bc$

⇒ plb or plc

Case 1: p|b
$$\Rightarrow$$
 b=pd for some deD
pt0, D is an ID, p42D(D)
 $\Rightarrow f=bc = (pd)c = p(dc)$ Cancellation, properly
 $\Rightarrow 1=dc \Rightarrow ceU(D)$
Case 2: p|c $\Rightarrow beU(D)$
So p is irreducible
Remarks/Important facts
(1) If acD is irreducible and a=bc, then arb or arc
(2) If pcD is prime and
 $p|a, \cdots on$
for $a_1, \cdots, a_n \in D$, then
 $p|a^n \Rightarrow p|a$
(3) If b|a and aeU(D) then a=bc so that $1=b(ca^{-1}) \Rightarrow b\inU(D)$
Lemma
i) The relation ~ is an equivalence relation on D
So D splits into a disjoint union of equivalence classes relative to ~
ii) Equivalence classes of 0 and 1 in D are respectively {0³ and U(D)}
Praof:
i) Reflexive: V ocD, $a=a 1 \Rightarrow arca$
Symmetry: Va, b&D, $a-b \Rightarrow a=bu$, $u \in U(D)$
 $\Rightarrow b=an'', w' \in U(D)$
 $\Rightarrow b=an'', w' \in U(D)$

$$\Rightarrow a \sim c$$
ii) 0-0 (reflexive) $\Rightarrow 0 \in [0]$
 $a \sim 0 \Rightarrow a = 0$, $u \in U(D)$
 $\Rightarrow a = 0$
 $\Rightarrow [0] = \{0\}$
 $a \sim 1 \Rightarrow a = 1a = n$, $u \in U(D)$
 $\Rightarrow a \in U(D)$
 $\Rightarrow a \in U(D)$
 $\Rightarrow a \in U(D)$
 $\Rightarrow a \in U(D)$
 $\Rightarrow [1] \in U(D)$
 $v \in U(D) \Rightarrow v = 1v \Rightarrow v \sim 1 \Rightarrow U(D) \in [1]$

$$\Rightarrow [1] = U(D)$$
Example

$$D = Z, \text{ then } Z = \{0\} \sqcup \{-1, +1\} \sqcup \{2, -2\} \sqcup \{3, -3\} \sqcup \cdots$$

$$= equivalence classes in Z$$
Remarks/ Important facts' continued
(4) If bla and alb $\Rightarrow a \sim b$

$$p \text{ notify a = b c for some b c D}$$
Then
$$a1 = a = bc = adc$$

$$If a = 0 \Rightarrow b = 0 \Rightarrow a \sim b$$

$$If a \neq 0 \Rightarrow a \in U(D) (since D is an integral domain)$$

$$\Rightarrow c, d \in U(D)$$

(5) If
$$p, q \in D$$
 are primes and $p|q \implies p \sim q$
 $p \land oz f:$
 $p|q \implies q = q 1 = pr$ for some $r \in D$
 $\implies q|p$
 $\implies q|p$ or $q|r$ since q prime
 $q|r \implies r = qs$ for some $s \in D$
 $q = pr = pq s = qp s \implies 1 = ps$ by cancellation, properly
 $\implies p \in U(D)_{X}$
Hence $q|p$ and $p \sim q$ by (4) above
(6) D is an integral domain, $a, a', b, b' \in D$, $a \sim a', b \sim b'$
 $a|b \iff a'|b'$
(?) $p \in D$ prime and $p \sim q \implies q$ is prime
 $p \land oz f:$
 $p \sim q \implies q \neq 0$, $q \notin U(D)$ by Lemma page $59(i;)$
Juppoise $q|ab \implies p|ab by (6)$
 $\implies q|a \text{ or } q|b$
(8) $a \in D$ irreducible, $a \sim b \in D \implies b \neq 0$, $a \in U(D)$
 $a \sim b \implies b \neq 0$, $b \notin U(D)$ by defining $a = ba = for some u \in U(D)$
 $a \sim b \implies b \neq 0$, $b \notin U(D)$ by defining $a = ba = c(d)n = c(dn)$
 $a = inreducible \implies ceU(D)$ or dae $U(D)$

$$d = (dn)n^{-} \in U(D) \implies d \in U(D)$$

Hence
$$c \in U(D)$$
 or $d \in U(D) \Longrightarrow$ b irreducible

Proposition

Proof:

We have already proven for any ID, p prime
$$\Longrightarrow$$
 p irreducible

Consider principal ideals
$$pD$$
, $bD \subseteq D$. Then consider ideal

Sum of ideals are ideals. D is a PID \Longrightarrow pD+bD is principal

$$pD + bD = dD$$
 for some $d \in D$

Then $p = p1 + b0 \in dD$

$$b = po + b1 \in dD$$

In particular dlp \Longrightarrow p=dq for some qED

p is prime
$$\implies$$
 p is irreducible

$$\implies$$
 c $\in U(D)$ or $q \in U(D)$

 $\frac{\text{Case 1}}{\text{q is a unif}} \implies p \sim d \text{ and } dlb$

<u>Case 2</u>: d is a unit.

d ∈ pD + bD ⇒ d=sp + tb for some s,t ∈ D

$$c = 1c = dd c = (sp + tb)d c = spd c + tbcd = spd c + tpad$$

⇒ plc

Unique Factorization Theorem

Now lets have some a ED and try to factorize

$$a = p_1 \cdots p_m$$
 where each $p_i \in D$, prime

Theorem Unique Factorization Theorem

Let D be any integral domain.

Let a e D,

$$a = p_1 \cdots p_m = q_1 \cdots q_n \quad m_1 n \in \mathbb{N}$$
, $p_i, q_j \in \mathbb{D}$ prime

Then m=n and one can rearrange q₁,...q_m so that

Hence a decomposition of a cD as a product of primes is essentially unique

Base case: m=1

Suppose then
$$a = p_1 = q_1 \cdots q_n$$

Suppose n 7 1. Here

Then q₁....q_{n-1} ED is a unit. And so IrED s.t

$$q_1 \dots q_{n-1} = q_1 = q_2 \dots q_{n-1} + \dots q_{n-1} + \dots q_{n-1} = q_1 \dots q_{n-2}$$

$$\implies q_{11}, \dots, q_{n-1} \in U(D) \quad \text{closure, group theory}$$
$$\implies q_{11}, \dots, q_{n-1} \text{ is prime and units } \underset{\swarrow}{\longrightarrow}$$

с 11

Hence n=1, $a_1=p_1=q_1$

Inductive step Juppere m21 and P(m) holds for m-1 instead of m.
Let
$$a=(p_1)(\dots, p_m) = q_2 \dots q_n$$
 where each factor p_1, q_j is prime.
 $\implies p_1|q_1, \dots, q_n$ and p_2 prime
By remark (2), p_1 divides atleast one of the factors
 q_1, \dots, q_n , i.e.
 $p_1|q_j$ for some index j
By remark (5) then $p_1 \sim q_1 \iff p_1 = q_1 n$ for some $u \in U(D)$
 $p_1 P_1 \cdots p_n = P_2 n q_2 \cdots q_n$.
So $p_1 \neq 0 \implies p_2 \notin ZD(D) = \{0\}$. By cancellation property
 $\implies p_2 \cdots p_n = (mq_2) q_3 \cdots q_n$
 $prime \qquad prime \qquad prime$
 uq_2 prime by remark (7).
By rearranging $uq_{2,1}, q_3, \dots, q_m$ we can make them associated to $p_2 \cdots p_n$ respectively
 $q_1 \sim nq_2 \sim p_2$
 $q_3 \sim p_3$
 $p_1 \sim q_1 \cdots q_n$

<u>Remark</u>: Let D be any integral domain and a ED be irreducible, not prime Then a does NOT decompose into prime factors <u>**Proof</u>**: (contradiction):</u> Suppose a=pq, p,q ED, prime p prime \implies p $\notin U(D) \implies$ q $\in U(D)$ primes irreducible ⇒ a~p ⇒ a is prime (Remark)) × More Examples 1)

17. Examples of irreducible elements Let $d \in \mathbb{Z} \setminus \{1\}$ be square free d \$ 0 $\mathbb{Z}[\overline{J}] = \{a + b \overline{J} \mid a, b \in \mathbb{Z}\}$ is a subving of C with the identity 1 + 0.6Usual + and x operations on $\mathbb{Z}[Jd]$ $(a + b \sqrt{d}) + (c + e \sqrt{d}) = (a + c) + (b + e) \sqrt{d}$ $(a+b\sqrt{d}) \times (c+e\sqrt{d}) = (ac+bed) + (ae+bc)\sqrt{d}$ Proposition Z[Ia] is an integral domain <u>**Proof**</u> $D = \mathbb{Z}[\overline{d}]$ 1) D is commutative 2) D > 1= 1+0i= 1+0/d 3) $\neq D(D) \leq \neq D(C) = \{0\}$ şoy Norm Definition The norm on $D = \mathbb{Z}[Jd]$ is the function $N: \mathbb{Z}[\overline{Ja}] \longrightarrow N^{\circ} = \mathbb{N} \cup \{o\}$ $N(a+b\sqrt{d}) = |a^2 - db^2| \ge 0$

Remarks

(a)
$$N(a+bfa) = |(a+bfa)(a-bfa)|$$

(b) If d<0, then $N(a+bfa) = a^2 - db^2 = 0$

0

Proposition

(i) Any
$$2c\mathbb{Z}[I\overline{a}]$$
 has a anique presentation,
 $2=a+bI\overline{a}$ for some $a,b\in\mathbb{Z}[I\overline{a}]$
so our definition, of N is correct (well-defined)
(ii) $N(2)=0 \iff 2=0$
(iii) $N(2u) = N(2)N(w)$ $\forall 2, w\in\mathbb{Z}[I\overline{a}]$
(iv) $2\in U(\mathbb{Z}[I\overline{a}]) \iff N(2)=1$
Proof:
i) Let $a+bI\overline{a} = c+eI\overline{a}$ for $a,b,c,e\in\mathbb{Z}$
Then, $(a-c) = (e-b)I\overline{a} \implies (a-c)^2 = (e-b)^2d\neq 0$ (*)
o
suppose $\underline{e+b}$, we know that $d\neq 0$, $d>0$ to avoid contradiction,
 $d>0$ and $d\neq 1 \implies d>1 \in \mathbb{Z}$
 $\implies d$ has a prime factor in $\mathbb{Z}_{>0}$
 $\implies pl(a-c)^2$
 $\implies pl(a-c)^2$
 $i) Let $2=a+bI\overline{a}$. By using Remark (a) and (i) of our proposition, we have
 $N(2)=0 \iff |a^2-db^2|=0 \iff |(a+bI\overline{a})(a-bI\overline{a})|=0$
 $\iff a=b=0 \iff 2=0$
(ii) $2=a+bI\overline{a}$, we created, $a,b,c,e\in\mathbb{Z}$
 $N(2w) = N((a+bF\overline{a})(c+e\overline{a}))]$$

$$= \begin{vmatrix} a^{2}c^{2} + 2acbed + b^{2}e^{2}d^{2} + db^{2}c^{2} - 2bcaed - da^{2}e^{2} \end{vmatrix}$$

$$= \begin{vmatrix} a^{2}c^{2} + b^{2}e^{2}d^{2} - db^{2}c^{2} - da^{2}e^{2} \end{vmatrix}$$

$$= |a^{2}-db^{2}|(c^{2}-de^{2})|$$

$$= |a^{2}-db^{2}| \times |c^{2}-de^{2}|$$

$$= N(2) N(\omega)$$
in $2 \in U(\mathbb{Z}[\sqrt{d}])$, then $2\omega = 1$ for some $\omega \in \mathbb{Z}[\sqrt{d}]$. Then by (iii)
 $1 = N(1) = N(2\omega) = N(2)N(\omega)$
 $\Longrightarrow N(2) = 1$ and $N(\omega) = 1$. Conversely, let $2 = a + b\sqrt{d}$ with $a, b \in \mathbb{Z}$
 $N(2) = 1 \implies |a^{2}-db^{2}| = 1 \implies |(a+b\sqrt{d})(a-b\sqrt{d})| = 1$
 $\implies (a+b\sqrt{d})(\pm (a-b\sqrt{d})) = 1$

Theorem

Let
$$d \in \mathbb{Z} \setminus \{0, 1\}$$
 be square free (can have $d = -1$, $i = \overline{J} = 1$)
The units of $\mathbb{Z}[\overline{J}d]$ are:
i) 1, -1, i, -i if $d = 1$
ii) 1, -1 if $d < -1$
iii) 1, -1 and infinitely many others if $d > 1$

<u>Proof</u>:

i) Let
$$d = \cdot 1$$
. Then, $Z = a + bi$, $a, b \in \mathbb{Z}$
By (iv) above, $Z \in U(\mathbb{Z}[i]) \iff N(2) = 1$
 $\iff a^2 + b^2 = 1$
 $\iff (a, b) = (1, 0), (-1, 0), (0, 1), (0, -1)$
 $\iff units are \pm 1$ and $\pm i$
ii) $d < -1$:
Then, $Z = a + b \cdot d \in \mathbb{C}$, but $a, b \in \mathbb{Z}$

Jow is irreducible by definition

Now consider

$$w = 1 + \sqrt{-3} \qquad N(1 + \sqrt{-3}) = 4$$

$$w = 1 - \sqrt{-3} \qquad N(1 - \sqrt{-3}) = 4$$

$$w = 2 + 0\sqrt{3} = 2 \qquad N(2) = 4$$

all irreducible

Now, $4 \in \mathbb{Z}[\sqrt{-3}]$

$$4 = 2 \times 2 = (1 - \sqrt{-3})(1 + \sqrt{-3})$$

Units of $\mathbb{Z}[J-3]$ are

$$\cup(\mathbb{Z}[-1]) = \{-1,1\}$$

Thus

Does NOT contradict factorization theorem since 1+5-3, 1-5-3, 2 are NOT prime

<u>proof</u>: (by contradiction)

Suppose (1+J-3) is prime.

$$(1+\sqrt{-3})|_{4} = 2 \times 2 \implies (1+\sqrt{-3})|_{2} \quad defn \quad of prime$$

$$\implies 2 = (1+J-3) \neq \text{for some } \neq \in \mathbb{Z}[J-3]$$

$$\implies 4 = N(2) = N(1+J-3) N(2)$$
$$\implies 4 = 4 N(2)$$

$$\implies z \in U(f-3) = \{1, -1\} \implies z = 1, -1$$

=

Similar for other elements

18. Unique Factorisation Domains

Definition

Let D be any integral domain
D is called a unique factorization domain UFD if
i)
$$\forall a \in D \setminus \{0\}$$
 with $a \notin U(D)$, then
 $a = p_1 p_2 \cdots p_m$, meN and p; irreducible $\forall i = 1, \dots, m$ in D
ii) Such a decomposition of a is essentially unique, that is if
 $a = p_1 p_2 \cdots p_m = q_1 q_2 \cdots q_n$
where all p_i , $i = 1, \dots, m$ and all q_j with $j = 1, \dots, n$ are irreducible in D, then $m = n$.
We can then relabel the q_j so that
 $p_i \sim q_i$ for each $i = 1, \dots, m$

<u>Remark</u>: If all irreducibles in D are prime, then (ii) holds by unique factorization theorem. Example

(1) Ring Z is a UFD. Indeed Z is an integral domain with $U(Z) = \{1, -1\}$

Irreducibles in \mathbb{Z} are prime numbers in the sense of Number Theory and also their negatives. Every $z \in \mathbb{Z} \setminus \{0, 1, -1\}$ can be written as product of these \Longrightarrow (i) holds

All irreducibles in Z are prime by ring theory \Longrightarrow (ii) holds

(2) Ring $\mathbb{Z}[\sqrt{-3}]$ is NOT a UFD because (ii) fails

 $4 = 2 \times 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$

irreducible, not associated

ŝ

Proposition

.et D be a UFD and
$$p \in D$$

p irreducible 👄 p is prime

<u>Proof</u>:

We know if D is any integral domain, then

p prime 🔿 p irreducible

We let D be a UFD and $p \in D$ be any irreducible elements.

We let D be a UFD and $p \in D$ be any irreducible elements.

Need to prove p is prime

p=ab ⇒ a∈U(D) or b∈U(D)

Need to prove if plab \Longrightarrow pla or plb

Suppose plab

plab
$$\implies$$
 pc=ab for some cED

 $\begin{array}{c} \text{if } a=0 \implies p|a\\ \text{if } b=0 \implies p|a \end{array}$

Suppose $a, b \neq 0$. Then $ab \neq 0$ (if ab = 0, $a \in ZD\{D\} = \{0\}_{\mathcal{X}}$ $a \neq 0$)

Hence cf0.

If $a \in U(D) \Longrightarrow p | b by remark (6)$

If $b \in U(D) \Longrightarrow pla$ by remark (6)

Let a,b∉U(D).

<u>proof:</u>

if $c \in U(D)$. Then $p \sim ab$, where $a, b \notin U(D)$, $a, b \notin O$

By remark 8; ab is irreducible as an associate of provention of the second state of th

Now let us apply UFD conditions to a and b

$$a = p_1 \cdots p_m$$
 and $b = q_1 \cdots q_n$

where all p_i with i=1,...,m and q_j with j=1...n are irreducible in D. Then

$$pc = ab = p_1 p_2 \cdots p_m q_1 \cdots q_n$$

is a factorization of pc as a factorization of m+n irreducible elements.

But also c factorizes into a product of irreducible elements. Due to (ii), c must have exactly min-l irreducible factors while

If

⇒ p prime by definition,

1

Theorem

Let D be a principal ideal domain.

D is a PID
$$\Longrightarrow$$
 D is a unique factorization domain

<u>Proof</u>:

$$a = a_1 b_1$$
 $a \in D \setminus \{0\}$, $a, b \notin U(D)$

 a_1 and b_1 cannot be as a product of irreducibles

$$a_1 = a_2 b_2 \qquad a_2, b_2 \neq 0, a_2, b_2 \notin U(D)$$

not product of irreducibles

Continuing, we get
$$a_1, b_1, \cdots, a_i = a_{i+1}b_{i+1}$$
, each a_i is not a product of irreducibles
Consider $T_i = a_i D$.
Since $a_i = a_{i+1}b_{i+1} \implies a_i \in a_{i+1}D$. Hence we have
 $a_1 D \le a_2 D \le \cdots$
Let
 $I = \bigcup a_i D$
 $i \in M$
I a PID. In particular, we have
 $c \in c D = I = \bigcup a_i D$
 $i \in M$
 $C \in c D = I = \bigcup a_i D$
 $i \in M$
 $C \in c D \Rightarrow \exists n \in \{1, \cdots, \}$ s.t $c \in a_n D$. Then
 $I_n = a_n D \le I = c D \le a_n D$
 $\Rightarrow I = a_n D$
 $a_{n+1} \in I \implies a_{n+1} \in a_n D \implies a_{n+1} = a_n b$ for some $b \in D$. Hence
 $q_n = a_{n+1} \in a_{n+1} = q_n b b_{n+1}$, $a_n \neq 0 \notin N \ge D$
 $\Rightarrow 1 = b b_{n+1}$
 $\Rightarrow b_{n+1} \in U(D)$ a unit g_i
A contradiction. Hence a is a product of irreducibles.

													2	0	v	in	2		И		2	1													
													J.	r				5	IM	5		12												-	
1)e-	fini	łi	or	P	rope	ev	Id	eals																										
						an												_	_																
							1																												
		An		ide	al	of	R	is	ργο	per	îf	1	‡ 1	१																					
	Pri	me	I	dea	ls																														
1	De	fini	' †i	on.	P	rim	e I	dea	als																										
		Let	1	ĸ	be	an	y 1	ring																											
		An	i	lea	l P	0.	fa	ri	ng	is	prim	e	if																						
						p۲			,																										
							•																												
	_		ii,) A	a,	be	K				_						-	_	_		_											_	_		
							ał	ρe	Ρ.	\Rightarrow	> a	e P)	DY	b	εP																			
	_	_																	_		_														
	Ex	am	ple	5 0	f	prin	ne	ide	als																										
										(_)	_ 5	~1	1	1	5	_1			• .																
					10	}	but		ZD	(K)	= { (٥٦,	t	her	11	0]	Ĭ\$	pı	'iM(e															
	((;)	V																																
	((;;)	٥	h =	0	E	⇒	<u>م</u> د	0	or I	h = ()																							
														1																					
(:						I									Ī																			_	
		An	y	ide	al	of	2	2 ha	as :	form	n I	: = M	Z	f	01	SOI	me	n	e N	0 =	N	υ{	0}												
						ime								•			_																	_	
			-	[]	γı	ime		. /		12	PU	me																							
	-	рло	<u>of</u>	<u> </u>													_																		
		•	n '	=0	=	\Rightarrow	I	= (Z	= {	0)	ar	d	we	. K	nou	J 2	ZD	(2) =	:{	03		So											
				N	= () _		7	L	is p	mim	e																						-	
		•	٨e	N	, n	21,	n	not	pr	ine	. T	her	6																						
								n -	ab				1 4	(1	<u>ل</u>	< ሊ	-																		
														•									_												
			Th	en		n =	n.1	6	nZ			>	nł	ía	,	n٠	ł 6) =	+	≯	-	a 4	Ι	= N	Z	 and		b∉	I	= N /	L				

•
$$n \in N$$
 be prime, $n = p \ge 1$
Consider $I = p\mathbb{Z}$, p prime. pick ony $c \in p\mathbb{Z}$. Now
 $c = p\mathbb{Z}$ for some $\mathbb{Z} \in \mathbb{Z}$
For any $a, b \in \mathbb{Z}$
 $ab \in I \implies p|ab \implies p|a$ or $p|b$
 $\implies a \in I$ or $b \in I$.
Properties of Prime Ideals
P1) Theorem
Let P be any proper ideal of R
P is prime $\implies 2D(\mathbb{R}/p) = \{0\}$
Proof:
 (\implies) : Suppose P is prime.
Suppose $(a+P)(b+P) = 0+P \implies ab+P = 0+P$
 $\implies a \in P$

$$\implies$$
 a \in P or b \in P P prime

$$\Rightarrow$$
 a+P=O+P or b+P=O+P

$$(\Leftarrow)$$
: Suppose $ZD(R_p) = \{0\}$. Suppose $ab \in P$

$$(a+P)(b+P)=(ab+P)=0+P \implies (a+P=0+P \implies a \in P) \implies prime ideal$$

 $b+P=0+P \implies b \in P) \implies prime ideal$

(P2) Corollary

ideal P of R is prime
$$\iff R_{p}$$
 is an ID

<u>Proof</u>:

iii) By (i), $a \neq 0$, by ii) $a \notin U(D) \iff aD \neq D$ (proper) aD is prime 👄 bceaD 🔿 beaD or ceaD $\iff bc = ad \implies b = ap \quad or \quad c = aq$ \iff albe \implies albor ale 👄 a prime

20. Maximal Ideals

Let R be any ring Maximal Ideals Definition Maximal Ideals An ideal M of R is maximal if (i) M is proper, M & R (ii) For any ideal I⊆R M⊆I⊆R ⇒ I=M or I=R Properties of Maximal Ideals (MI) Theorem Let R be any commutative ring with IER. Let M be any ideal of R. Then. M maximal $\iff R/M$ is a field (M2) Corollary Let D be a PID and I \$ 803 be a non-zero ideal. Then I is maximal 🖨 I is prime (M3) Proposition Let D be any ID. Then, Vac D\{0} i) If the ideal aD of D is maximal, then a is irreducible ii) If D is a PID and a irreducible, then $aD \leq D$ is maximal (M4) Corollary

Let R be any commutative ring with an identity 1 and P be any ideal of R

P maximal \Longrightarrow P is prime

Еx	am	ple	

Example		
Consider $\mathbb{Z}[x]$ Then		
i) Z[x] is a UFD		
ii) $\mathbb{Z}[x]$ is not a PID		
phoof:		
(ii) Let I= 2Z[x]		
$(11) Let L = 2 \mathcal{U} L^{*} J$		
J = x Z [x]		
$I+J \in \mathbb{Z}[x]$ is an ideal		
<u>Claim</u> : I+J is not principa	l, i.e.	
I+J <i>≠ f ℤ</i> [x]	∀ fixed polynomials Z[x]	
Suppose $I + J = f \mathbb{Z}[x]$		
I ∋ 2·1 ⇒ 2·1 = 2 =	$2 \cdot 1 + x \cdot 0 \in 1 + J = f \mathbb{Z}$	
$0 \neq 2 = fg \text{for } s$	ome geal lx j	
deg(2) = 0 = deg(4) +	$deg(g) \implies f is constant, f \neq 0$	
	0	
$x = x \cdot 1 \in J \leq T + J = f \mathcal{D}[x]$	\implies 1x=fh for some he $\mathbb{Z}[x]$	
	\implies f=11 since f is constant	
	$\Rightarrow 1 = (\pm 1)(\pm 1) \in f \mathbb{Z}[x]$	
	⇒ I+J=ℤ[x] э1	
	\Rightarrow 1=2u + xv $_{\ast}$	
	odd 9	
	has even constant term.	
	nuy even constant term	
Hence Its not oxincipal		

Hence ItJ not principal

<u>Claim</u>: I+J is maximal.

Take any polynomial $f \in 2R + xR \implies f = 2a_0 + a_1x + \cdots$

⇒ f is polynomials of even constant terms

If 1+J≤K is any bigger ideal, if contains odd constant term polynomial, say

 $2k-1 + a_1x + \cdots$

l+J

By closure of ideals

 $(2k + a_1x + \cdots) - (2k - 1 + a_1x + \cdots) = 1 \in k \implies k = \mathbb{Z}[x]$

21. Irreducible Polynomials

Let F be any field such as

$$E_q$$
: F=R,C, F=Z/pZ p prime

We know R = F[x] is a PID \implies R is an integral domain

Every ideal I of R has form I = fR, $f \in R = F[x]$

Corollary

Note:

Irreducible Polynomials

Definition

Lemma
Let
$$f \in F[x]$$
 and $deg f = 1$. Then
 f is irreducible
Take $f \in F[x]$ of $deg f = 1$. Then
 $f = ax+b$, $a \neq 0$, $b \in F \implies f \neq constant$
Suppose $f = ax+b = gh \implies deg(gh) = deg(g) deg(h) = 1$
Either $deg(g) = 1$, $deg(h) = 0 \implies h$ non-zero const
 $deg(g) = 0$, $deg(h) = 0 \implies h$ non-zero const
 $deg(g) = 0$, $deg(h) = 1$
Either $deg(g) = 1$, $deg(h) = 1$
 g non-zero const
 $deg(g) = 0$, $deg(h) = 1$
 g non-zero const
 $deg(g) = 0$, $deg(h) = 1$
 g non-zero const
 $deg(g) = 0$, $deg(h) = 1$
 f is irreducible
Let $f \in F[x]$ such that $degf = 2$ or 3
Then f is irreducible
 f has no root in F
 $(f(a) \neq 0 \quad \forall a \in F)$
Precef: both uags contrapositive
 $(f(a) \neq 0 \quad \forall a \in F)$
Precef: both uags contrapositive
 $f = (x \cdot a)q$ tr where $y = 0$ or $y \neq 0$ but $deg(r) \leq 1$
 $f = (x \cdot a)q$ tr where $y = 0$ or $y \neq 0$ but $deg(r) \leq 1$
 $D = f(a) = 0q + r \implies r = 0$ ris a const
 $2, 3 = deg(f = deg(x \cdot a) + deg q = 1, 2 | \implies f$ is not irreducible
 $(=)$ Juppose f is not irreducible. Need to prove f has a root
So $f = uv$, u , v or non-constant polynomials
 $2, 3 = deg(f) = deg(m) + deg(v) \implies deg(w) = 1$ or $deg(v) = 1$

Suppose degu=1
$$\Rightarrow$$
 u=cx+d, where c+0 \Rightarrow c⁻¹ \in F
f=(cx+d)v=c(x+c¹d) \Rightarrow x= c¹d, then x is a root
Similar for deg v=1
(a) Consider the principal ideal I= fF[x]
Then by (M1)
I is prime \Leftrightarrow maximal by (M1)
(a) Now consider quotient ring:
F[x]/I where I=fF[x]
By (M3) F[x]/I is a field
(classification, Theorem)
Theorem
Let G be any finite field.
(i) The multiplicative group U(G) = G {0} is cyclic.
(ii) All finite fields G with the same number of elements [G] are isomorphic as rings
(iii) The number [G] = pⁿ for some prime p, neN
(iv) For any prime p, there exists an irreducible polynomial f $\in \mathbb{Z}/p\mathbb{Z}[x]$ of degree n
such that the field

Proposition

Let $f \in F[x]$ be irreducible. Put I = f F[x]. Then

F[x]/I is a field.

Moreover, the map

 $\theta: F \longrightarrow F[x]_{/I}$

a ⇒a+I

is a one-to-one homomorphism, $F = Im \Theta \leq D/I$

Proof:

By the proposition (M^3) , I = f F[x] of F[x] is maximal. Then, by theorem (MI),

$$F[x]_{T}$$
 is a field

homomorphism: Proved in Factor Rings chapter

one-to-one: Take any
$$a, b \in F$$
 such that $\Theta(a) = \Theta(b)$
 $\Theta(a) = \Theta(b) \iff a + I = b + I$
 $\iff a - b \in I = f F[x]$
 $\implies a - b = fg$
If $a - b \neq 0$
 $0 = deg(a - b) = deg(fg) = degf + degg > 0$ ince f not constant
 $\iff a = b$

In particular, $\Theta: \mathbb{Z}/p_{\mathbb{Z}} \longrightarrow (\mathbb{Z}/p_{\mathbb{Z}})[x]/f(\mathbb{Z}/p_{\mathbb{Z}})(x)$

$$D_{I} \supseteq Im \Theta \cong Z/pZ$$

Example

Suppose that f = cx + d where $c, d \in F$ and $c \neq 0$.

Then f is irreducible by Lemma pg 80 and by proposition pg 81, the factor ring

$$F[x]/$$
 is a field.
 $fF[x]$

<u>(laim</u>: F[x]/ ≅ F /fF[x]

Already shown for I = fF[x], the map

$$\Theta: F \to F[x]/: a \mapsto a+1$$

is one-to-one homomorphism.

Onto: By division algorithm for F[x], ue F[x] can be written as

$$u = (cx + d)q + r$$

where the remainder reF is constant

$$(cx+d)_{Q} \in I \implies v+I = r+T$$
Theorem.
Let n GN and F be any field
Let $f \in F[x]$ be an irreducible polynomial of degree n, $deg(f) = n$. Put $I = fF[x]$
i) Then the ring
 $F[x]/fF[x]$ is a vector space
over the field F of dimension n under the operation
 $(u+I) + (v+I) = (u+v) + I$
 $ax(u+I) = au + I$
 $\forall u, v \in F[x]$ and $ac F$
ii) The vector space $F[x]/I$ has a basis
 $1+I_i x+I_i, \dots, x^{n'}+I$ (4)
Proof (D = $F[x], I = fF[x]$)
(i) Lef us make our set D_I a vector space over F
Vector space structure
 $\forall a \in F, \forall u, v \in D$ $(u+I) + (v+I) = (u+v) + I$
 $a(u+I) = au + I$
Rings axioms \Longrightarrow vector space axioms
(ii) Take any $u \in F[x]$ and divide f with a remainder r
 $u = fq + r$ where $q \in F[x]$ and either r=0 or r=0 or r≠0
 $deg(r) \leq deg f = n$.
 $D/I = vtI = fg(rr + I) = r+I$, here r is a linear combination (with coefficients from F)
 $I = fp$

$$\Rightarrow$$
 (*) a spanning set D/I

$$Y = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}, a_0, a_1, a_2, \cdots, a_{n-1} \in F$$

Since U+I=r+I,

$$F[x]/I = \{(a_0 + a_1x + \dots + a_{n-1}x^{n-1}) + I : a_i \in F\}$$

= $\{a_0(1+I) + a_1(x+I) + \dots + a_{n-1}(x^{n-1}+I) : a_i \in F\}$
 $\implies 1+I, x+I, \dots, x^{n-1} + I \quad span, F[x]/I.$

Finally need to prove that (*) is linearly independent in D_{T}

Suppose

$$a_{0}(1+I) + a_{1}(x+I) + \dots + a_{n-1}(x^{n+}I) = 0+I$$

$$\iff (a_{0}1+I) + (a_{1}x+I) + \dots + (a_{n-1}x^{n+}I) = 0+I$$

$$\iff (a_{0} + a_{1}x + \dots + a_{n-1}x^{n+}) + I = I$$

$$\iff (a_{0} + a_{1}x + \dots + a_{n-1}x^{n+}) \in I = fF(x)$$

Hence

$$a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} = fg$$
 for some $g \in F[x]$

Suppose this is #0

$$n > \deg(a_0 + \dots + a_{n-1}x^{n-1}) = \deg f + \deg g \ge n_{\mathcal{X}}$$

$$\implies a_0 + a_1 x + \dots + a_{n+1} x^{n-1} = 0$$

$$\implies a_0 = a_1 = a_2 = \cdots = a_{n-1} = 0$$

22. Examples of Irreducible Polynomials

Let F be a field and $f \in F[x]$ be irreducible. Consider the field F[x]/I, I = f F[x]Let X = x + I. Then, for any $g = b_0 + b_1 x + \cdots + b_m x^m \in F[x]$, its coset in F[x]/I equals $g(X) = b_0 + b_1(x+I) + \cdots + b_m(x+I)^m$ Examples (1) $F = \mathbb{R}$ and $f \in \mathbb{R}[x]$ $f = x^2 + 1$ irreducible $\iff f(a) \neq 0 \quad \forall a \in \mathbb{R}$ (Lemma 2) New field $\mathbb{R}[x]/(x^2+1)\mathbb{R}[x]$ 1+I, x+I=X is a basis Any element of our new field is a(1+I) + b(x+I) = a(1+I) + bXNew field contains R as a subving $\{a(1+I)=a\in I \mid a\in R\}$ Further $X^{2} = (x+1)^{2} = x^{2} + I = (x^{2} + 1) - 1 + I = -1 + I$ \implies $\chi^2 = -1$ in new field We can define a ring isomorphism, "new field" → C a(1+I) + b X ↦ a + bi

(2)
$$F = Q$$
; $f = x^{3} - 2$ irreducibles $f(a) \neq 0$ $\forall a \in Q$
Consider $a^{3} - 2 = 0 \iff a = 3\sqrt{2} \notin Q$. So irreducible in $Q[x]$
New field $Q[x]/fQ[x]$ has basis over Q of $1+I$, $x+I$, $x^{2}+I$
 $x = x^{2}$
Suppose $X, y \in Q[x]/fQ[x]$, $a, b \in Q$
Our addition, and multiplication, are Q -linear
 $(ay + b2) + (a'y' + b'2') = ay + a'y' + b2 + b'2'$ $y, 2 \in new$ field
 $(ay + b2)(ay' + b'2') = aa'yy' + ab'y'2' + ba' 2y' + ab'y'2'$
Therefore enough to compute addition and multiplication, for basis cosets
 $+ yx^{2} = 1$ $X = x^{2}$ $x = x^{2}$ $x = 2$
 $x = x^{2} | x + 1 | x + x = 1$ $1 | x = x^{2}$
 $x = x^{3} | x + 1 | x + x = x^{2}$ $x^{2} | x^{2} = 2x$
 $x = x^{3} | x + 1 | x^{2} + x = x^{2}$ $x^{2} | x^{2} = 2x$
 $(2) F = Z/2Z = \{[0], [1]\}$
Calculating irreducible polynomials in $F[x]$
Take any $+cf[x]$ of degree 2
 $f = [1]x^{2} + ax + [1] \implies 1$ $f = [1]x^{2} + [1]$

2) f = $[1]x^{2} + [1]x + [1]$

(0) = (1) + (1) = (0)

2) f([0]) ‡ 0

l 7 irreducible by Lemma 2 ⇒ =

The field $F[x]/I$ has	2^{2} = 4 elements. They a	Ye	
[0]+I, [1]	+I, x+I,([1]+x)	+T	
New notation:			
[0]+I=[0]			
[1]+ <u>I</u> = 1			
x+I = X			
All elements take form			
aX + b			
Drawing tables			
+ 0 1 X X-	·I	x 0 1 X	<u>x+1</u>
0 0 1 X X.		0 0 0 0	0
1 1 0 X+1 >		1 0 1 X	X+1
X X X+1 0 1		X 0 X X+1	
X+1 X+1 X I 0	×	+1 0 X+1 I	X

$x^{2} = x^{2} + I = x^{2} + x + [1] - (x - [1]) + I = -x - [1] + I = x + [1] + I$