


1. Rings
Recap of Abelian Group
Definition Abelian Groups
An Abelian (commutative) group R is a set with a binary operation

+: RXR > R

(a , b)1ca + b

such that

(0)a + b = b +afa
,
beR

(1)a + (b+ c) = (a + b) + c

(2) 70R s . t Ota = at O VaeR

(3) VacR
,
I ( a) ER s .ta + ( a) = ( a) + a = 0

Notation : We write a + ( b) = a - b

Definition of a ving

Definition Ring

A ving R is a set with 2 binary operations
addition multiplication

RxR - R ; RXR + R ;
&

(a
,
b) i+ a+ b (a

,
b) axb

satisfying following axioms

i) (R , +) is an Abelian group

ii) (axb)xc = ax(bxc)fa
,

b
,
cR

iii) ax(b +c) = axb + axc fa ,
b

,R

(a + b)x) = axc + bxc Va,
b

,CER

Notation: a xb is represented by ab



Basic Example of a Ring
1) Proposition I is a ving
Proof :

· I is closed under binary operations + (addition) and x (multiplication
i) (2

,

+) is an Abelian Group

ii) V a ,
b

,
c I,

(axb)xc = (ab)xc = abc

= ax(bc = ax(bxc)

iii) V a,
b ,cel

a(b + c) = ab + ac

(a + b)c = ac + ba

Remark :

i) In the definition of a ring ,
we do not assume existence of a multiplicative inverse at

ii) We do not assume existence of multiplicative identity

EX : Cel
,
2 & eventhough 2"2 = 1 = e

In I ,
12

,
contains multiplicative identity

OI,

Remark : (R ,+ ) is Abelian group=
> OER

Remark : In general , multiplication is not commutative

Commutative Ring
Definition Commutative Ring
A ring is commutative if Va ,

beR,

axb = bxa

i

. e. multiplication is commutative



More Examples of Rings
1) Q

,
1

,
C are all commutative rings with identity under usual t and X

2) N and No = NUSOY with usual + and X are not vings as (IN , t) and (No
,
+) are not groups

3) R = 22 = [22 : ze1] with usual operations + and X is a commutative ving
For identity .

FzE]
,

ze = z => e =12

=> 22 does not contain multiplicative identity
4) Consider Mn(I) : nxn matrices with real entries

Matrix addition is commutative

A + B : Matrix Addition

AXB : Matrix Multiplication

R = Mn(R) is a non-commutative ving , identity In .
So are MnCC) , Mn(Q) and Mn(2)

5) For a ring and any new ,
Mn(R) is the set of all nxn matrices with entries in R.

For
any ring ,

Mn(R) is a ving

6) Proposition

(In
,

#
, x) is a commutative ving with identity 1

. Denote this ving by

2/n]

Proof :

(i) Already seen that (&/nI ,
#) is an abelian group

(ii) V [a]
,
[b]

,
[c]e In,

[a] x([b][c]) = [a]x[bc) = [a(b))
= [(ab)c) = [ab]x[c] = ([a]x[b))x[c)

(iii) Let [a]
,
[b]

,
[c] < /n2

·

Then

[a)([b] e[c]) = [a](b + c) = [a(b + c)

= [ab + ac) = [ab][ac]

= [a)[c]e[a][c]

Similarly ([a]@[b]) [c) = [a][c) @ [b][c].



7) Proposition

Let X be a set , X # 0.
R = 2

powerset.

Define binary operations ; VA ,
BER,

A + B = AAB = (A)B)U(B(A) (symmetric difference
AxB = AlB

Then (R,+, x) is a ving with O element &
, identity X

Proof :

i) (0) AAB = (A)B)v(B(A) = (B(A)v(A)B) = BAA

(1) AX(BAC) = (AXB)AC

(2) AX0 = A

(3) AAA = 0 => A is its own inverse

Therefore (R ,
A) is an Abelian group

ii) Observe that for any subsets A ,
B

,
CIX

(A1B)1c = An(Brc)

which is basic set theory
iii) Enough to check for all subsets A ,

B
,

C =X
,
the equality

A n (BAC) = (A1B)A(Brc)

since 1 is commutative

It holds true because both sides are the collection of elements of X that belong to A
and to precisely one of two subsets B and C

.

And X+0 and AnX = A for any AEX . So X is the identity of our ving

Remarks : *

If there exists an element IER such that 10 and

1a = a1 = a VaER

then R is a ring with identity
The identity element ItR , if it exists is unique



2. Elementary property of rings

F

Remark : Any ring R is an Abelian Group relative to addition + ,
so

i) OtR identity is unique

ii) VaeR
,
I-aER st at (a) = 0

,
- a is unique

Lemma

i) VaeR
,
a0 = 0 = 0a

ii) al- b) = - (ab) = - (a)bXa
,
beR

iii) (- a)(- b) = ab fa
,
beR

Proof :

i)ax0 = a0 = ax(0 + 0)

= aX0 + aX0

Adding -aO to both sides
,

0 = a0 - a0 = a0 + (a0 - a0) = a0

=> 0 = a0 + 0

=> 0 = a8

ii) al - b) + ab = a))- b) + b)

= a0 = 0

=> a)- b) + ab = 0

=> al- b) = - (ab)

Dual for showing (-a)b = -(ab)

iii) ( - a)(- b) = - ()- a)b)) = - (- (ab)) = ab by ii

#

In particular, if R has an identity 1 ,
then Va , beR,

· ( -1)b = - (1b) = - b

· (- 1)(- 1) = 1x1 = 1



Subrings
Definition Subring
Let R be any ring (t ,

x)
,
let SER be any subset

We say S is called a subving of R if :

(a) DES Cidentity
(b) a

,
bes = - ae)

,
atbes

,
axbes Closure

Remark : If SCR is a ring under the same operations + and X asRJ is a subring of R

Proposition

If JER is a subring ,
then S is a ring relative to the same operations +, X as on R

Proof :

(i) From defa of subving
closure : at bes

&Identity :0 => S[(R
,
+ )

Inverse : Faes
,

- aes => (s ,
+ ) is an Abelian Group

(ii) Va ,
b

i
ces => a

,
b

,
ceR and since JGR is closed under x

a(bc) = (ab)c

(iii) a(b +c) = ab + ac

(a+ b)c = ac +b

Hence by defn of a ring ,
S is a ving .

T

Examples of Jubrings
fields
- not

1)DIR =Q1
a field

(t ,
x) subving

aring
subring
H W

ving ring
-

2) N= No I a subring
Of N ,

VneI
, -neN



3) [22I is a subring without an identity
H

ring

O = 222

I is a ring with multiplicative identity 1t]) : Vze2
,
1 . z = z

1422) => 2I is a ving without an identity
4) Vn > 1

Mn(C)]Mn() [Mn(Q) - Mn(2) subvings
Definition Square free

Fix any del ,
d+0

,
d +

1
.

dis square free > P/d Up , prime

i . e. & is not divisible by p2 Xprimes p

des ....
- 6

,

- 5
,

-3
,

-2
,

-1
,

2
,

3
,

5
,

6, ... )

(5) R = D is a ving. Define SER

s = [a+ brd : a
, be]

,
d prime free) = [d] with +, x

claim: S = [d) is a subring of D = R

(a) O = O + Ord identity
(b) a + brd

,
a+ b'dES

--a-bid ES

· (a+a) + (b + b) ES

· (a+ bra)(a+ bra) = (aa + bb'd) + (ab' + db')ES

& Z
Hence S is a subring J a ving s

if d0 => S & R subving
Definition

d = - 1 = (i) = [a + ib : a
, be 2] are called Gaussian integers



(6) Proposition

Let R be
any ring. Let X be any non-empty set. Consider

Fr = Eff : X < R3

Define the binary operations + and X On F* ,
VoeX by

( +g)(x) = + (x) + g(x)
(+ xg)(x) = (+g)(x) = f(x)g(x)

Fr is a ving
Proof :

i) (0) XxX
, (f + g)(x) = f(x) + g(x)

= g(x) + f(x) since f(x)
, g(x) = R

,
(R,+ ) Abelian

= (g + f)(x)

(1)(f + (g + h))(x) = f(x) + (g + h)(x)

= f(x) + (g(x) + h(x)

= (f(x) + g(x)) + h(x) since f(x)
, g(x) ,

h(x) = R
,
(R

,
+ ) group

= ( + + g)(x) + h(x)

= ((f + q) + h)(x)Vx= X

(2) 0 function : 0 : X <R ; x + O

( + 0)(x) = f(x) + 0(x) = f(x) + 0
= f(x)

= O + f(x)

= (0 + f)(x)

(3) Inverse function ( -f(x) = - f(x)

(f + (-f))(x) = + (x) + (- + (x)

= f(x) - f(x)

= 0 = - f(x) + f(x) = (- f + f)(x)

Hence (FR ,+ ) is an Abelian group



3. Homomorphisms and Isomorphisms
Definition Ring Homomorphism

Let R
,

S be any 2 rings. A function

2 : R -> S

is a ring homomorphism if Va , beR

i) 2(a + b) = x(a) + x(b)
R S

ii) x(axb) = x(a)xx(b)
R S

If R andS are vings with identity 1 and

x(1) = 1

then a is a unital ring homomorphism

Remark : By Group Theory , if G : R-S is a ring homomorphism ,
thena is a group homomorphism

< : (R
,
+) < (S ,

+)

i) <(0p) = 0

ii) <(- a) = - x(a)

Definition

If < : R-J is a ring homomorphism and a is bijective,
then a is a ving isomorphism

If I an isomorphism < :R-S
,
then R is isomorphic to s denoted by

RES



Properties of Homomorphisms

Lemma

(a) The identity map
i : R- R ; i(a) = a

is aring isomorphism ; RER

(b) If x : R -S is a ring isomorphism , then

2 :S + R

is a ving isomorphism ; RES => JER

(c) If < : R-S and B :S-T are ring homomorphism (isomorphism) then

BL : R - T

is a ring homomorphism (isomorphism) ; RES and SET => RET

(d) Suppose RES.

R is commutative #J is commutative

Proof :

(a) fa
,
be R

i(a+ b) = a + b = i(a) + i(b)

i(ab) = ab = i(a)i(b)

and identity maps are bijections
(b) Let sc , yes. From Group Theory

x'( -x) = -a(x)

(x+ y) = x (x) +x (y)

Put a =c (c) and b = (y) . Then a (a) = ec and albl - y

As < is a homomorphism,

x(ab) = c(a)a(b) =

xy

=> d (x) (y) = ab = a (xy)

Further a is a bijection I' is a bijection.



(c) By Group Theory , B2 preserves + operation

Va , be R

(pa) = p(a(ab)) = B(c(a)a(b)) = p(x(a))p(a(a)) = (pa)(a)(pa)(b)

=> By is a homomorphism

< andB are bijection=> B2 are bijection
(d) Suppose R is commutative. V a,

beR

x(a)x(b) = a(ab) = x(ba) = x(b)d(a)

Suppose s is commutative. V a , bes

x (a)x (b) = a (ab) = x(ba) = x (b)2(a)
↑

Examples

1) Let
s = ((9b) : a

,beRYEMzRI

s is a subring of Mc(R).
Indeed O2xzES and XX ,

YES
,
-X

,
X +YES

Checking XY

Xy = (a)(d) = (acbd adtbCT
Now define function

a(a + ib) = (a)
↓ is a bijection (group theory
Moreover

a((a + ib) + (c + id)) = a)(a + c) + i(b + d)) = (a(a)a)
= (ab) + () = claib)+id%



a)(a + ib)(c + id)) = x(ac - bd + i(ad + bc)

=(a = (b)(a)
= ca + ib)c(c + id)

Thus a is a ring homomorphism > ↓ is a ving isomorphism
DES

2) Let m
,
neI and m n

. Define

2 : In> I/m2 ;

a)(z)n) = [z]m
For any zeI

, for any wel, we have

(z)n = [w]n > n(z - w)

=> m (z-w) since mu

# [z]m = [v]
m

therefore < is well-defined. We have equalities
a([z]n@[w]n) = c((z+ w]n)

=(z +w]m = [z)m#[w]m

= c([z]n)c((w]n)

and similarly for allz)[w]n) = c ((z)n) < (InSn)

=>L is a ving homomorphism.

Note : 2/n] = n
,
I mI = m

Hence 2 is a ving isomorphism only if men

Important !

Let R and s are vings with multiplicative identity 1 ER and IgeS

If L : R S is an onto homomorphism (or isomorphism) then

< ((r) = Is



4. Units and Fields
Definition Unit

Take any aER . If AbeR s . t

ab = ba = 1

then 'a' is called a unit of ourving

Remark : Let R be any ring with the identity ICR

1) Assume R*50) , then 1 + 0

Indeed VacR
, if 1= 0

,
then VaeR

a = a. 1 = a .
0 = 0 = R = 504

2) If a is aunit ab = ba = 1

=> b =c
,

a is invertible

Notation : Set of all units

[(R) = GaeR : a is a unit ?

Remark :

(a) Consider ]tR
.
Then 1x1 = 1x1 = 1 => 1E (R)

=> I = 1

The identity IER is unique ,
while there may be other units

(b) Note that 0 . b = 0 + 1 VbeR => RICO

(c) If at E(R)
,
then the element b such that

ba = 1 = ab

is unique

If at E(R) is a unit =a is unique



Lemma

Suppose for some acR
,
Eb

, ceR such that

ab = ca = 1 = b = c and so acER)

proof : b = 1b = (a)b = c(ab) = (1 = c => b = c
#

Corollary
Suppose that abl= b'a and ab-ba = 1

.
Then

ab= 1 = ba = b = b

"

Proposition
Let (R

, +, x) be any ring with an identity such that RISOY

Then (E(R)
,
x) is a group

Proof :

Identity : We know that 1 is a unit of R ,
that is IEU(R).

FacU(r)
,
ax1 = a = ax1

Associative : We know that X is associative on R = associative on UCR)

Inverse : If u
,
veU(R)

,
In"

,
v'eR such that

un' = 1 = u'u and V= 1 =v

Note that u is the inverse of u j u = (ii) => we U(R)

closure : Further

(nv) (vi u") = (n)(vv:)u = u\u = un = 1

=> luvl"= v'i

and similarly
(vu )(nv) = 1

Hence aveUR) by definition #



Examples of Units

1) R= = 0
,
7

.

Hence

v(r) = v(2) = [1, 1) : - NOT closed under +

- closed under X

2) v(Mn(IR) = [invertible matrices]

= [AtMn(R) : detAf03 = GL(n , IR)

=> v(Mn(R)) = GL(n , 1) : General Linear Group

3) U(IR) = IR 50]

u(Q) = Q403

u(k) = 450]

4) Proposition

v([/n]) = [(a) : ac2 and gcd(a , n) = 1)

Proof :

If [a] e U([/nI) => [a] [b] = (1) for some [b]e Ul[/n2)

=> [ab] = [1]

=> n(ab - 1)

=> ab-1 = nq for some ge2

=> ab -

nq = 1

=> gcd(a ,
n) = 1 Bezout's Theorem

conversely if gcd(a,n) = 1 => As
,
tel such that 1= as +at

=> [1) = [as + nt]
=>(1) = [as]

=> [1) = [a][s]

5) Proposition

For pprime , U([/p2) = (2/p() <[0]

Proof : If [a] + [0) => p+a = gcd(a, p) = 1 and [a] is a unit by previous



Fields

Definition Field

A field is a commutativering If with an identity I such that

E(I) = # 50%

Example : Q
,
R

,
D

, /p2) ; p prime are all fields.



5. Zero Divisors and Integral Domains
Zero Divisors

Definition Zero Divisors

Let R be a ving and R= 50]

An element aE R is a zero divisor if for some beR [03
,
by 0

ab = 0 or ba = 0

Set of zero divisors

ID = Ezero divisors of RY

Remark : O is a O divisor = OEZD(R)

Examples :

1)r = 2)= zD(z) = 503

2) Consider R = M2(4) .

Take

A = (b8 +0B = (09) + 0I

AB = (08) => A
,

BE 2D(R)

Non-zero Divisors

Definition Non-Zero Divisors

aER is a non-zero divisor if UbeR do]
,

we have

abt0 and batO

Set of non-zero divisors

NZD = Enon-zero divisors of RY

so if ae N2D(R) then

ab = 0 => b = 0 VacR ; ba = 0 = b = 0 VatR



Integral Domains

Definition Integral Domains

An integral domain is a commutative ring with identity IER s . t

2D = 503

that is has NO non-trivial non-zero. Equivalently
NED(R) = R 403

Example

R = 2
,
[D(R) = 503 => Integral Domain

Remark : For any ring R ,
the condition 2D(R) = 503 is equivalent to either of

i) Va , beR [03
,

we have ab+0

ii) Va,
be R

,
the equality ab = 0 > a = 0 or b = 0

Observe and compare

R is a field if RF50]

I
R is an ID if

1) R is a commutative ring 1) R is a commutative ring
2) R has identity 1 2) R has identity I

-3) VIR) = RIS0] -> 3) [D(R) = 507
I

Lemma

(a) If R is a ving with an identity 1 ,
then UR) EN2D(R)

(b) Any field is an integral domain

Proof :

(a) Take any ae USR). Suppose that

ab = 0 for some beR
.

atU(r) = a + 0

Then b = 1b = (aa)b = a (ab) = a 0 = b = 0

Similarly ba = 0 => b = 0

=> af2D(R) = acNzD(R)



(b) Let R be a field. Then properties 1, 2 for a field=> 1, 2 for an ID

R a field=> R is a commutative ring with an identity
By part (a) ,

v(R)[N2D(R)

Now R [03 = v(R) =NID(R) - R1503 ;

by defh of field
Observee. OtID(R) => 02D(R)

· neR 503 => nEvIR) field

=> at NzD(R)

Therefore N2D(R) = Rd03 => R is an integrable domain. *

Example of Integral Domains
1) For R =I ; v (2) = 51,1?

NID(z) = 2 40]

Hence U(2) <NID(2)
,
but v(I) =NID(R) = 2 do?

Thus I is an ID

I is not a field

2) In M2(R) , the matrix (07) is a O divisor because

188)(08) = (8 %)
3) InR/nI , we have ID(2/nI) = [03uS[a) : acI

,
atO

, god(ank1)
Indeed if gcd(a , n) = d >1

,
then

[] = [0)

[a) (n) = [a] = [)[n] = [0)

conversely if gcd(a ,
n) = 1 => [a] is a unit

=> [a] is not a zero divisor as

v(r) = NID(R)



Cancellation Property
Theorem Cancellation Property
Let R be any ring ,

let aeR be a non-zero divisor
,
i . e. ae N2D(R).

Then V b , ce R
,

we have

i) ab = ac => b = c

ii) ba = 2 => b = c

Proof :

i) ab = ac => a(b - c) = 0

=> b - c = 0 Since de NID(R)
,

a t 0

=> b = c

ii) Dual Argument *

Proposition

Let R be a finite ring with an identity 1
. Then

v(R) = N2D(R)

Proof : Due to previous Lemma,
U(R) [N2D(R)

.
Lets prove the opposite inclusion

Let R 503 = [a 1. az , .... and for some new and IER 20

Fix aiE N2D(R) . Then aaj +0 for j = 7
..... n .

So

Saia;: j = 1
, ...,
n3 [R50

IfGiaj =

didn by cancellation propertyor

Thus

Sajaj :

j = 1, ...,n) = n and R 507 = n

Therefore

Saia;: j = 1, . . .,
n3 = R203

But1 R 204 = Saia;: j = 1
, ...,

n3 = tae st dide = 1

Similarly considering opposite order



Similarly for fixed ai , consider Japa;: 1, ,n] and a particular Ks .
t avai = 1

Now

al = 1ae = (apai)al = Aplaiae) = art = ak

Hence aieU(R) T

corollary
Let R be a finite integral domain. Then R is a field.

Proof :

Thering is an integral domain => R is commutative

Also IER and ID(R) = 507
. By the above proposition

v(R) = NID(R) = RS0Y

=> R is a field
#

Wedderburn Theorem

Theorem Wedderburn Theorem

Let R be a finite ring with an identity I such that

2D(R) = 503
.

Then R is a field

Jacobson Theorem

Theorem Jacobson Theorem

Let R be a ving such that FaeR
,
An = n(a)> I such that

a = a
.

Then R is commutative

Example : Suppose that

a = a VaER

Then R is commutative.

Indeed Va
,
bER ; (a+ b) = (a+ b)= (a+ b)(a + b) = a + ab + ba + b= a + b



=> ab + ba = 0

Also ( -a) = (- a) = (- a))- a) = a = a => (- a) = aVaER

Hence ab + ba = 0 => ab-ba = 0

=> ab = ba

Finite Rings with 2D = 201

Theorem

Let R be
any ving with R >

1
.

Suppose that 2D(R) = [03
.

Prove that R is a ving with identity
Proof :

suppose R is a ring with ID =504.

Let R 203 = Ea
, ...., and for some new,

=> aiENZD(r)

=> dide + 0 for 1 =
1, ..., n

Saide : 1=
1, . . ., n3 = R203

=> aiaj = a; for some j
=> diaja =&9) Since aieN2D ,

cancellation property
=>

aja ,
= al for any 1

similarly for k =j

ajaj
=

aj = a
, jaj = a

,a)j
=> a

, aj = ak

=> a; identity
⑭



Units are NOT zero divisors

Theorem

Let R be any ving , then

v(r)n2D(r) = &

Proof : (by contradiction) :

Suppose - acR s . tacU(R) and acZD(R)

If ac ID(r) => EbeRIdo] s . t

ab = 0 or ba = 0

1) ab = 0 = b = (aa)b = a (ab) = a 0 = 0

=> b =0x

2) Similar

Hence empty intersection #



6. Ideals of a Ring
Definition of Ideals

Definition Ideals of a ring
Let R be

any ring and IIR be any
subset

The subset I is an ideal if

i) OEI

ii) a I-acI

iii) a
, bel= a + be I

iv) acI
,
veR => ar

,
rae I

Note :

· Urings R ,
ideal => subvings

· Converse NOT always true. In general

subving => ideal

Examples of ideals

(1) R = &
,
take any

neI ? I
, put

I = nX = Enzz23
.
This is an ideal

proof :

i) Of I by z = 0

ii) take any nz el => n( z) = - nzEI
Il

" - A

iii) take a = nz
,

b = nw for z
,wel

a + b = nz + nw = n(z +w)eI

iv) ainz = av = (nzw = nzw

and ar = rae I
#



(2) Take any R = QCS =& is a subring
We know that I is a ving itself
=> J is a subring

But S is not an ideal of Q

proof : counterexample :

Property (iv) does not hold

a =2
,

v =z =Q => av =14 *

(3) General example : Trivial Ideals

V Raving
· I= 503 is an ideal as

ii) 0 + 0 = 0,

ii) - 0 = 0507

ir) OXU = OeCOY EveR

· I = R is also an ideal

Theorem

(a) Suppose RF 507 has an identity 1FO

If IER is an ideal and ICI, then

I= R

(b) Suppose that R has identity 1 .

Also suppose that VaeR &03
,
AbeR s.

t either

ab = 1 or ab =1

Then SoY and Rave the only ideals of R

() If R is a field ,
then 5032R and R are the only ideals of R

Proof :

(a) Suppose ICI and IER be an ideal
. By defn of ideal

VaeR
,
VacI

,
we have vaeI.

In particular this holds for a =1 va = r



=> rel FreR

=> R =I

=> R = I

(b) Take any ideal If R
. If I = 507 , nothing to prove.

Suppose I + 507 and OI => AneR 203 such that atI

By hypothesis ,
AbeR such that

ba = 1 or ba = 1 => 1CI by defn of ideal

=> I = R by (a)

(c) In a field R
,
FaeR 203

,
Easo (b) => (c)

*

Kernels and Images
Definition Kernel Image
Let < : R CS be any ring homomorphism VR

,
S vings

The Kernel of R : Kevd = Ever <(v) = 0 ?

The image of R : ImC = [Jes s = <(v) for some veR]

Another way of writing image is

Ima = (x(v) =s veR]

Lemma

Let d : R J be any ring homomorphism. Then

(a) Im IS is a subring (not always an ideal

(b) Ker & [R is an ideal

Proof :

(a) < : R <S is a ving homomorphism

In particular , this is a group homomorphism w .v . t '' operation
x : (R

,
+)c(s

,

+)

So Imd S is an additive subgroup



Hence by properties of homomorphisms from group theory
i) x(0) = 0 => OE Im<

ii) If a, be IMX
,
then EscyeR such that

a =x(x)b = x(y)

By group theory
- a =- x(x) = c(-x) - ImC

Finally

a + b = c(x) + x(y) =x( +y) and ab = x(x)x(y) = a(xy)
Hence -a

,
a + b

,
abe Im X

Therefore Ima is a subring
(b)Need to show that Kevd[R is an ideal .

i) OER , ClOp) = Os by Group Theory => Otker

ii) Vacker d

a) -a) = - x(a) = 0 = 0 = - ackerd

iii) a, bekerd = <(a) = <(b) = 0

d(a + b) = x(a) + x(b) = 0 + 0 = 0 = a + bekerd

iv) VLEKerd
,
VreR

clar) = <(a)a(r) = 0x(v) = 0 => arckerd

↓)val = <(v)x(a) = x(r)0 = 0 = vackerd

Hence -a
,
atb

, va
,
are Kera => Kera is an ideal

*



Proposition

Let d : R is be any ring homomorphism .

Then a is one-to-one Kera = 203

Proof :

# : Suppose a is one-to-one
.

< (0p) = 0 = OckerL

If veKeva => <(v) = 0 = c (0)

=> v = 0 EveR since < is 1-1

Hence Kera = 50 ?

(E) : Suppose that Kerc = 503. Then Vu
,
veR

a(n) = x(v) =x(n -v) = 0

=> u-vEkerd

# u= v ↑

corollary
Let R be a field ,

I be any ring and x : R CS be any ving homomorphism. Then either

Imx = 503 or a is one-to-one

More generally ,
the same property of < holds if we replace the hypothesis that R is a field

by a weaker property that

ItR and VaeRIoY
,
IbeR such that ab = ba = 1

Proof :

By part (b) of the Lemma on pg26 , Kera is an ideal.

By part (b) of the Theorem on pg25 ,
Kera = 104 or Kevd = R

Case 1 : Kera = 504 => x is one-to-one

Case 2 : Kerd = R => maps all elements of R to O

=> EveR
,
a(r) = 0

=> Ima = 504
#



7. Examples of Ideals
(1) For any ving R ,

the identity
i : R > R

is a ring isomorphism (seen above

Proposition

Zero function wiR > R ;

al > 0

is a ving homomorphism

proof :

a(ab) = 0 = 0x0 = x(a)xx(b)

↓ (a + b) = 0 = 0 + 0 = x(a) + x(b) *

Hence

Kevi = [aeR : i(a) = 02 = EacR : a = 07 = 50h

kevw = SaeR : w(al = 03 = R

are ideals of R

(2) Let

Tz((R) = ((9b) : a
,

b
, ceRR)

Tc(IR) =Mc (IR) is a subring

Define < : Tz(RR) < IR

s(ab) = a

This is aring homomorphism since

2)(b) + (a)) = c)a +a b+b) = a +a = <(b) + (a

4)(b)(y', )) = <(agab't ,bc) = aa = 2(b)(



Here

(b) Ekerd <(g)
=o

= a = 0

Therefore

keva = <(0 b) : b
,
RI

and Kevd is an ideal

Proposition
Let R be any ring ,

I
,
JER be any ideal

11 J is an ideal of R

Proof :

i) Of [ and OEJ = OtIn]

ii) a < I1J => atI and at J

=> -atI and -aeJ

=> - at [1]

iii) a
,

b < 115 => a
,
be I and a

, bej

=> atbEI and atbej

=> atbeInj

iv) veR
,

at InJ E VER
,

at l and aEJ

=> va
,
are I and av ,

raej

=> va
,

ave In J
e

Sum of Ideals

Let R be any ring and I
,
JER be any 2 ideals.

Define

I + j = da+ b : acI
,
beJ] sum of ideals



Lemma

(a) I+ J is an ideal of R

(b) The union IUJ I + J

(c) The sum It J is the smallest ideal of R containing IVJ

Proof :

(a)i)0 = 0 + 0 - I + 5

I
ii) VaeI and Sej

- (a + s) = ( - a) + (- s) + I + 5
A

I

iii) (a + b) + (c+d) = (a+ c) + (b+d) + I + j + is Abelian
A A N 1

It 5 It5 I j

iv) (a + b) (c+d) = (ac + bc) + (ad + bd) + 1+5
A

I I
Observe that

actand a actbe

similarly be J and deJ= bdEJ

del and acR= ades) ad + bes

Hence (ac + bc) + (ad + bd) + 1+5 = I + J is a subring
More generally for ac I

,
bEJ

,
veR

(a+ b)xv =

ar
+

bEI
vx(a + b) =

va
+ I

=> It J is an ideal of R.



(b) Suppose ac I => a = a +0 I + 5

=> I I+J (* )

Suppose bel = b = 0+be It J

=> JI+J (* )

From (* ) [VJ [ It

(c) We need to show if KER is any ideal of R containing IUJ,
then K also contains ItJ

Take any ideal KIR such that IU J -K.

Need to show that It5-K

[
,
52k => VatA

,
bej

,
a

,
bek

=> atbe k

Hence ItJ -K
*

Example of a sum

R =&
, then I =4 ,

J=101. Then

I + 5 - 2 is an ideal

claim: 4 + 101 = 21

proof :

(2) : Suppose (c = 41 + 101 => x = 4z + 10w = 2(2n + 5v)

=> xt2l

(2) : Suppose ye2

Fyt22, y = 22 for come Zel
.

Observe 2 = -8 + 10

y
= 2z = ( - 8 + 10)z = (- 8)z + 107

= (4)-2)) + 10z = 42 + 102 *

More generally for any m ,
neN

m2 + n] = gcd(m ,n)2

proof :

(2) : Suppose zem2 + n] = z = am + nb ,
a

,
bel



Let d =gcd(m ,
n)

d m and dn = m=dl and n= dk for some K
,leI

=> z = a(de) + b(dk)

=> z = d(al + bk)

=> dz

=> zed]

(2) : Suppose z =d => &z

=> z = dk for some ke2

gcd(m,n) = d => As
,
+ = 2 s . t

d = ms + nt

z = (ms + nt)k = m(x) + n(tk) + m2 + n])

=> al + b2) = d2
⑭

More generally , for any m
,
ne I,

m21n2 = (cm)m ,
n)]

proof

zem2)(n2zm2) and zen2

# m/z and nz

# km(m
,
n)/z

= zekm(m ,n)]
B



8. Factor Rings
Reminder of Cosets

Let (G
,

+) be any Abelian group ,
HEG subgroup.

Definition Coset

(G
,

+ ) be any Abelian group ,
HEG subgroup. Then

VacG
, a + H = (a +xx H3 - G

is a coset of a relative to H.

In

a + H

"
representative

Properties of Cosets

Lemma

(i) a + H = b +H=> a - beH

(ii) a + H = b +HE)(a+ H)n(b + H) + q

(iii) a + H = H = 0 +H) acH

Proposition

HEG and (G , + ) Abelian HEG normal

Proof :

(htH
,
h = hgg = ghgt VgeG #

Factor Group

Definition Factor Group

Let (G
,

+) be any Abelian group ,
HEG subgroup.

& = [a + H : a + q) = [set of all cosets in G relative to HY

Factor/Quotient group



Factor Rings
Now let R be any ring (R ,+ ) is an Abelian group.

Let IER be any ideal of R . Then

IIR is a subgroup relative to => we have R/I
Consider factor set R/ with binary operation

· Addition : (a+ 1) + (b+ 1) = (a + b) + I

· Multiplication : (a +1) x (b +1) = (ax b) +I

Proposition
The binary operations +, X

+: (a+ 1) + (b+ 1) = (a + b) + I

X : (a +1)x(b +1) = (axb) +I

are well-defined

Proof :

By Group Theory ,
the set R/1 is an Abelian group under+

In particular , try is well-defined

showing via explicit calculation :

Suppose a +I = a'+ I and btI = b'+I for some a,
al

,
b, be R

=> a -a'fI and b'- beI

Hence
(a -a) + (b - b')cI and ab - ab = (a - al)b + a(b - b)EI

=> (a + b) - (a + b) E I and ab-ab'eI

=> (a+ b) + 1 = (a) + b) + I and (ab) + 1 = (ab') + I

Therefore

+: (a + 1) + (b + 1) = (a + b) + I

= (a + b) +I

= (a +1) + (b' + 1)



X : (a + 1)x(b +1) = (ab) + I

= (ab') + I

= (a' +1)x(b + 1)
*

Proposition

(R/1 , +, X) is a ving with +, X defined above

Proof : By Group Theory ,
the set R/I is an Abelian group.

Associativity : For any 3 cosets a +I
,

b +I
,

C + IER/I
((a+1)x(b + 1))x(c +1) = (ab + 1)x(xXI)

= (ab)c + I

= a(bc) + I

= (a + 1)x(bcXI)

= (a +1)x((b + 1)x(c+ I))

Distributivity :

i) (a + 1)x((b + 1) + (c+ 1)) = (a + 1)x((b + c) XI)

= a(b +c)XI

= (ab + ac)xI

= (ab +1) + (ac + 1)

= (a + 1)x(b+I) + (a + 1)x(cx])

ii) similar

By Group Theory ,
(R/1 ,+ ) is an Abelian group.

Has identity I = O I

inverse : - (a + 1) = ( - a + 1)

Abelian as

(a +1) + (b + 1) = (a + b) +1 = (b+ a) + 1 = (b + a) + (a +1)
M



Examples

1) Let R =I and VneN
,

we have ideal

I = n < I.

For any a
, be I

,
we have

a +1 = b +1) a- benz #) n(a - b) (a = bmodn

Hence in quotient ring /I ,
we have

a + 1 = [a]

and

R( = 2/nz) = 2[0)
,
(1), . . .

.,
in - 133 = In

+ and X are usual modulo n rules

Fundamental Theorem of Homomorphisms for Rings
Theorem

Let R
,

S be any rings and x : R is be a homomorphism
Then KevLER an ideal of R and ImdIS is a subring of S and

& Kera ImC

Proof : Let I = Ker

Define

2 : Ryey'Ind by

< (a +1) = x(a) VaeR

show that is bijective and a ving homomorphism

well-defined : Take a, be I such that

a + 1 = b +1- a - bel = Kera

# da-b) = 0

= x(a) - x(b) = 0

=a(a) =a(b)



# <(a + 1) = x(b +1)

onto : Vue Im L
,
take any u = a (a) for some aeR and

<(a + 1) = x(a) = u

1 - 1 : c(a + 1) = c(b + 1) = x(a) = c(b)

=>x(a) - x(b) = 0

=>(a - b) = 0

=>a-bel = Kera

=> atI = b +I

homomorphism : let atI
,

b +It R/I .

Then

x((a+1) + (b+ 1)) = x((a + b) + 1)

=a(a+ b)

=2(a) + <(b)

= c(a + 1) + z(b + 1)

x((a+1)x(b+ 1)) = a)(axb) + 1)

= c(axb)

= f(a)x((b)

= c(a + 1) xj(b + 1)
#



9. Examples of Factor Rings
(1) Canonical Homomorphism

Let I be an ideal of R

: R <R/Ii
al > a +I

Lemma

it is an onto homomorphism with Ker = I

Proof :

homomorphism : Va
, bER

x(a+ b) = (a + b) +1 = ( + 1) + (b+ 1) = x(a) + x(b)

↑ (axb) = (axb) +1 = ( + 1)x(b + 1) = x(a)xX(b)

onto : Va + It R/1 ,
-GER s. t x(a) = a +I

#

Note : O element of R/1 is O+I = I

acKern(a) = IE) atI =I

# atI

Therefore Ker = I

(2) Direct Product Ring

Definition Cartesian Product

Let R
,
S be vings. Define
RxS = [ (r

,
s) : VER

,
ses ?

Define addition and multiplication

addition : (v
, s) + (r's') = (v + v'

,
s+ s) = RxS

multiplication : (v,s)x(v ,
s') = (ur'

,
ss'l



Proposition
Let R andS be rings. Then

(RXS
, +, x) is a ring with addition and multiplication defined above

claim : I [RXS ; I = <(0 ,
5) is an ideal ?

i) 10
,
0) El

ii) (0 , 5) + (0 ,5) = 10
,
sts') = I

iii) (0 ,5) x(a , b) = (0
,
sb) = I

claim : RXR
Define map

< : RXS > R

(v
, s)1 >

homomorphism : < ((v , s)(ris')) = c)(rviss)

= vu

= x)(v ,s)a)(ris'll

onto : EveR
,
I (v , Ole RXS s . t

< ((v , 0)) = v

(v , s)Ekera # f((v , s)) = 0

# v = 0

= (v , s) = (0
, 5)

Caution : Let R be any ring and IER
,

be any ideal .

In general, it is not true then

(M/ )X R



Example : R =1
,
I =21

R(q = 2(2] =2 = (10)
,
(2)]

Then (22x*) #I

Suppose ac (*<X22)
,

a + 0

Observe

([1]
,
0) = 22 x22 => (11)

,
0) + ([1]

,
0) = (10)

,

01

Therefore a + a = 0

if I an isomorphism 2 : 22x21 >

(a) =2
,
a(a) + 0

a(a + a) = x(a) + 2(a) = 0
x

(3) Let

Tz(() = ((gb) : a
,

b
, c tR]



10. Binomial Theorem
Let R be any ving. Then in general&R

In particular for zeI and veR,
we do not know (yet) what is z.r

v=R
,
zv = u+ y

We can still define z . v VZEE VveR "by hand"
Case 1 : VveR

, if Z = O
,

O . v = OER

Case 2 : zt>o ,
zv = U+ r+.... +v : = Er

Case 3 : ze , 0 ,
(z)70 => GE)veR

case 2

- z(v) = z)- a) = (- a) + ... + ( - a) = - (za)

zu = - (zv)

Example : - zu = -u-u = ( -2)v = (-2r)

Proposition

For any z
,
we] and a

, beR

i)(z +w)a = za + wa

ii) (w)a = z(wa)

iii) z(a + b) = za + zb

iv) (za) (wb) = (zw)(ab)

Proof :

By direct verification using new multiplication rule

X : XXR > R

X : (z
,
a) 1 < za

iii) 1) z = 0
,
0(a+ b) = 0 = 0a + ob = 0 + 0 = 0 R

2)z(230z(a + b) = (a+ b) + ... + (a +b)

=Atat Abelian
Z

= za + zb



3) ze2 : By the fact that
- (n + v) = (u) + (- v) in an Abelian group

z(a + b) = - () - z)(a+ b)) = - (- (za) + (- (zb)) = za + zb

z(a +b) = -(b)+ .... + (a+b) -a
- z times

- (a+ b) - .... - (a+b)
=....- (a + b) -

Z
Z

#

Proposition
V ving homomorphism ; a : R c S

a(za) = za(a) Vzt] VaER

Proof : Proof is a consequence of Group Theory

Binomial Theorem

For any new

(u) =N! K = 0,

Theorem Binomial Theorem

Let R be any commutative ving .

Let a ,
beR and neI

.

Put abam and a b= b
.
Then

(a + b)=(an y
Proof : (By induction) :

Base case : n = 1

(a + b)
+

= a + b = abo + ab = (7)a
+ bo + (7)a67 = a + b



Inductive hypothesis : Suppose property true for neN

(a + b)"= z()a
Inductive step : Showing that Une ,

P(n)= P(n+

(a + b)
+

= (a +b)(a +b) = (a +b))a "b
=Zab+a

we used equality ab = ba
.

= (6 + (at
+ ()ad"

+

shifting index = (Nat+b)
k = 1

+ (n)ab"
+

= (g)
+
6 + (i) +())a

Observe (n) + ( , ) = (i)
(n) = () = (4) = (ii) ==

Hence we get

(a + b)
+

= (+1)6+ a b
=> la +b) - #



11. Characteristics of Rings and Fields
Let R be any ring with identity 1ER .

Then consider the subset

c = (z1 : ze2 3 = E
......,

(2 . 1)
,

1
,

0
,

1
,

2 . 1
,

3 . 1
,
......

List might have repeats. For example R=I
c = <[0]

,
[S]

If R= or( = C=

Proposition

Let R be
any ring with identity 1ER

CIR is a subving

Proof :

i) 0 C

VE . 1
,

w . 1 where z
,
weI

ii) -(z1) = (z)1 = (

iii) z. 1 + w . l = ( z +w)ltk

in (21) (wil = (zw)(1 . 1) = (zw)(1) =C
*

characteristics

Definition

Let R be an integral domain. The characteristic of R is

char R = S
ord 1 in C if this order is finite
O if ord1 = 0

Meaning ord 1 in C as an additive group

Examples of characteristics

1) R = 2 ; c = 2)

ord1 = ord 1==> charC



Similarly charl = O ; charc = 0
,
char = O

2) R = 2 c ; (1)
,
10)

,
(1)

,
(2) => ord(1) = ord() = ordli] =

II] []
C

charz = 2

Theorem

Let R be an integral domain (1ER). Then
charR = 0 or charR =

p , p is prime

Proof : (contradiction)

Consider C = &21 : Ze23 an additive group

ord1 = 20
=> charR = 0

some natural number

Suppose ord, 1
= mn where m ,

neI (not prime).

We will get a contradiction. By defn of order

0 = (mm)1 = (mz)(n1) = m1 = 0 or n1 = 0 as R is an integral domain

Case 1 : m1 = 0=>
By definition of order ,

the minimum number of times k = mn

1 + 1 + ..... + 1 = 0
-

1 times

is mn. But ord, 1) = mn and mEnX
But ord I = mn andm[mn men

s

Similarly we get n1 = 0 => n = mn

=> m =1

This means ord
,
I cannot be factorized as mn unless m = I or n = 1

=> ord
,
I is prime *



Now let zel and beR
. By using (za) (wb) = (zw)(ab) with a = 1eR

,
w = 1t]

(z1)b = (z1)(1b) = z(1b) = zb

Let b + 0
,
charR = O

,
then

zb =0( (z1)b =0 z1 =0 z = 0

If charR =

p,
then

zb =0( (z1)b = 0 z1=0 pz

Important Technique

In some mathematical proofs have this mathematical structure

We need to show g= 0

Typically we prove that kq = 0 for some ke2 and K = 0

Suppose that K = P

G EF ,
charF= p

fild
We get

pq= 0 Et (p . 119 : 0

Personal Explanation
R be any integral domain ,

IER

(R ,+) is an Abelian group

ord(1)
char R = S D if ord (1) = 0

ord (1) is the order of element 1eR as an additive group

ord(1) = n is the least neW set n . 1 = 0

ord(1) = 0 If n . 1 0 OneN identity of group (R, +
similar to a

"
= e (G ,

*)



12. Rings of Polynomials
Let R be any commutative ring with identity IER ,

1 fo

Leta be a formal symbol (xER)
A polynomial in s over R is a formal expression

f = do + a
, x + .. . + anx

where neI"= NUSO3 and do, ..., an ER.

ai is the co-efficient of si

conventions

(a)x"= 1 and x
=

x

(b) We can miss terms ac with a = 0 10 coefficient)

For example : 1 + * + 2x= 1 + 2x

(c) We abbreviate 1xi = :

(a) A polynomial of form acc = al = a is called a constant polynomial
(e) Consider 2 polynomials

f =do+ a
,
x + ... + ans

g
= by + b , x + .. - + bmxm

when m = n : f = g E do = bo ,
a

,
= b, . . . . an on

When n > m
, apply convention (b)

g
= b + b

,
x + b + .. . + bmxm+ 0x

+

+... + 0xh

=> bm + 1
= 0, . . .

., bn = 0

Similar for n>m .
Then for equality ,

we have

if man f =g) ap = bo ,
a

,
= b, .... An = bn , bn +

= bm = 0

if men + = g > do = bo ,
a

,
= b, ,

. . . .

an = bn
, am

= = An = O



Ring of Polynomials
Definition

Let R be any commutative ring with identity IER ,
1 fo

Denote the set of all polynomials over R by
R[x]

Define addition and multiplication

Addition : (t)

Vf , g( R(x)

f = 90 + a
,
x + .... ans

m
, ne No

g
= bo + b , x + .. .. + bmxm

f + g
= c + 2,x + .. . + (x) ,

1 = max(n ,m)

S if is mindm , n ?
it mcin=it if n Jim (6 = do + bo)

By convention (e) , assume hom. If min , then append O terms to the "Shorter polynomial
f + g

= (ao +bo(x + (a ,
+ b

,
)x + ... + (an + buk

Multiplication : (x)

fxg = (a0 + a
, x + ... . +anx")x(bo + b

,
x + .. . + bmxh) = do + d ,

x + .. + da+man
+ m

where for OK [M+ n

di = [aibj
i

Note that

fxg = (ax + a
,
x + .. . +anx)(bo + b ,

x + .. . +b)
= abs + (aob ,

+a
,box ...... andmechtm



Proposition Ring of Polynomials
Let R be any commutative ring with identity IER ,

1 fo

Then
(R[x]

,
+, x)

is a commutativeving with an identity .

Proof : Fill later

Corollary
The zero and identity of R(x] is

i) Zero : O polynomial f = 0 = Ox = 0.

ii) Identity : Constant polynomial f = 1 = 1 .co

Proof :

i) Considerf = 0 .s = 0 . 1 = 0

This is the zero element of R[x]

For any geR[x]
0 . 9

= do + ..... doc

di = Zaibj = Obp i= 0 as f = 0 polynomial ,
I term

H
= j OER

=> 0 .g
= 0 +.. .. + Oc = 0

ii) Similarly f = 1 .c = 1 = 1 .1 is the identity element of R[x]

For any geR(x),
1 . g

= do + ..... doc

di = Zaibj = 1bp i= 0 as f = 1 polynomial ,
I term

H
= bi OER

1.g
= bx + .... +b =

g #



Degree of a polynomial
Let f + 0 ,

feR() a non-zero polynomial . Then for some n = 0,

f = a + a
,
x + .. . + anx"

where atleast one of the coefficients is O

By convention (b) ant0.

Definition Degree of Polynomial
Let f + 0 ,

feR() a non-zero polynomial .

f = do+ a , x + .. . + anx"

with an FO .
Then degree of polynomial is

deg(f) = n

Theorem

Let R be an integral domain

Then RIx] is an integral domain ,
i . e. Vf , geR[x] do

+g + 0 and deg(+g) = deg(f) + deg(g)
Proof :

By definition ,
R is a commutative ving with identity such thatZDR = 20?

By above proposition ,
R[s] is a commutative ving with identity I

Let f , geR(x] [03
.
Then

f = a t .... tans" and g=bo .... +bmsh

where an FO and bm FO .
Here

n = degf and me deg g

By definition
fg = abo + ... tanbmohm

an +O and bmFOanbm #O since R is an ID
,
2D(R) = 503

If anbm= 0 => an = 0 or bm = 0
x
=> Anbm O

Therefore +xg + 0 and deg(tg) = n + m = deg(f) + deg(g)



It also follows that ID(R[x]) = 507 => R(x] is an integral domain.

Non-Example

Theorem fails if R is NOT an integral domain .

Consider R = /41
,
[2]eR and [2] x (2) = 14]=

f = [1) + (2)xdegf = 1

f = (() + [2]x)([] + (2]x) = 1 + (4)x + 14] = [1]

depf= 0 + 2 = depf + deg +

Moreover

feu(R[x]) .
But fAR = fAU(R)

Corollary
Suppose R is an integral domain
Then units are

v(R(x]) = U(R)

Proof :

(2) : Take any ae UCR)
. Then a has an inverse

, say b such that

ab = ba = 1

But both a and b are constant polynomials. So

u(r) [U(r[x])

(2) : To prove v(RE]) [U(R) ,
take any feU([R]).

Hence AgeR[a] s.
t f -

g = 1 #0 = + 0
, g + 0 RE) is an ideal

0 = degtg = degf + degg
=> degf = deg g = 0

=> f is constant polynomial
=> feRER(x] and AgeR s . t fg : 1

=> f + v(r)
T



13. Division Algorithm for Polynomials
Let F be any field .

SoF is a commutative ving with identity 1 ,
U(F) = F 50]

Theorem

Let R = F be any field. Let f ,geF(x] whereg
Then1 unique q ,

veF[x] such that v= 0 or v 0

f =

gq + r deg(r) < degg

Proof :

1) Proof of existence :

a) If degg = 0
,
then g is a constant polynomial g 0

We know that v(F) = F 907 => Eg'another constant polynomial and

f = (gg) + = g(gf) =

gq + 0

F(x]

b) Suppose degg = m > 0
.

Let L : = [f-gq : geF(x) ?

i) Suppose OfL . Then AgeF(c] s .tf-gq= 0 > += gg + 0

ii) Suppose OKL . Then minddegs 3 : =

Pick any s = reL such that degr= k

Then v = f-gq for some geF[x] => + =

gq + r

LeV70 .
Need to show that degv deg g

Write g = bot best ... bam for some me2so ,
assume bm O

V = G + (p + ... +c where +O

suppose KIM and get a contradiction. Consider deg = m + k - m

(bm" c
- M

= F[x] degrees <K Em
-Consider S = r-cbmc

**

g
= (o +<+... +4) - (bmx m(bo + b, + .... + bma)

Then either s = 0 or sto
.

But -
cancel

deg sk#



A contradiction : OKL

veL= v = f -

gq for some geF[x]
Les = v-cbmck Mg = f -

gq
- (bmc mg

= f - (g + (bmx m)g + L

But OfL so sto
, remains degs(k and seL ,

but K is minimal contradicts defi
of

This means that kIm not possible, MX
deg g

degr

2) Uniqueness

Suppose f =

gq+ where v = 0 or (VF0 and degu < degg)
f = gq +v where v= 0 or (v'70 and degv'< degg')

Let us show that then v= r' and q=q

0 =

gq + v -gq -v)()v - v = g(q -q)

Suppose that v'-v FO . Then deg (v-v'l < degg
i) v = 0

,
v0 degh'- v) = degl-v) < degg

ii) v= 0
,
v = 0 deglu'- v) = deglv') > degg

iii) v + 0
,
v70 deglu'-v) <maxdegu , degu's < degg

deg g) degli = deglg(q - q)) = degg + deg(q - q) X

Y

So v= v = 0 E) v= r

Then g(q-q') = 0
.
ButF is a field I F is an integral domain

Then F(x] has property 2D(F(c)) = 504

so gy(q- q) = 0 = g
- q =07 q =q

*



Example of a field F

F = [/p 2 where p is a prime number (pt2)

Claim: F is a field ,

F = <[0]
,
[l)

,

. . .

., [p-13]
· F is commutative

· F1 identity
· F is finite ,

commutativeving
u(F) = F(04E> 2D(F) = 50%

Take any class [K) which is a zero-divisor in 2/p2

k = 0, , . . .

., p
- 1 ; l = 0 ,

1, ...., p
- /

[is][e] = [0] => ke =

pm for some m = 0
,

1, 2, ...

kl = 0
, 4 , 2p, ..

. . ..; k
, esp X

kl = 0 in2

So k is a zero divisor iff k = 0

Example of Division Algorithm

F = 2/52

f = [1]x5 + (s]x4 + [2] + [4)

g =12] + 11)

Solve f =

gq + v , where either u= 0
, v 0 deg(v) < degg=

Step 1 : 5 = degf = deg (gg + v) => deg(gg) = 5

=> deg(q) + deg(g) = 5

=> deg(q) = 3

I q
= ax + bx + xx + d where a ,

b
,

c ,
de 2/52&V = uX + v where n , ve /52



Step 2 : [1] x5 + [s]x4 + 12]2+ [4] = ([2]x + [1]) (aci + bx + xx + d) + nx + v

= (2]ax*+ [2]bx4 + (a + (2]c(x + (b + [2]a)s + (c+ u)x

+ (d +v)x0
Step 3 : Equating co-efficients

i) [l] = [2] a (s) = a a = [3]

ii) [s] = 12]b & x[3] [4) = b b = [b]

iii) [0] = a + 12) [0] = [s]a+ c = [1]

iv) (2) = b + 12]d (1) = [3]b + d d = [4]

v) [0] = c + u [0] = c + u n = [4]

vi) [4] = d+ [4] = d + v [v] = [0]

Observe

(2)[s) = [ 1] => [2]= [s]



14. Polynomial Functions
Let R be any commutative ring with identity IER .

Let veR range over R and feR). Then

f = aox + a ,
x + .... tans" where neN USO]

do ,
91

,

... anER are coefficients and e only a formal symbol .

Define polynomial function f(r) with values in R by

f(v) = at + a
,
v + av + .... + and VreR

r
P

Then we have a correspondence

R[x] -> Spolynomial functions]
f( f (v)

Remark : if R = R
,
C

,
this correspondence is 11

f(u) = g(v) => f =

g equality of polynomials
=> fH f(v)1 - 1

NOT true for an arbitraryving or a field

Non-Example :

R= 2/22 = S[0]
,
(1) ?

+ 1

Take f = [ 1)+

g
= (1) + x + c + 10( +x4] +79 as elements of Rk

f) < f (r) : f (to)) = [i]
,
+((1]) = 10)

g ++ g(r) g((0)) = (i)
, g([i)) = [0]

=> f (r) = g(r) FveR



15. Principal Ideal Domain
Let R be any commutative ving with an identity 1

.

Lemma

Let R be any commutative ring with 1ER

i) For any given aeR ,
consider the set

aR = EarIveRY

Then aR is an ideal containing a R

ii) aR is the smallest ideal containing a

Proof :

i) a)0 = a0tR

b)av + a) = a(v+s) = aR

c) -

av = a)-v) = aR

d) ar. s = a(s)faR
Y

a =al = aR

ii) Take any ideal IER containing the given ae R

We need to show aR ?I

We know VacI
,
EveR

,
arel - aR ?I

#

Definition Principal ideal

The ideal

aR = Ear : VERY

is called principal ideal (generated element aeR

Examples of Principal ideals

1) 202 is a principal ideal of any ving R

S04 = SOrIveRY ; OeR



2) For R=2
,

n2 is a principal ideal for any new generated by a = n

Principal Ideal Domain

Definition Principal Ideal Domain

A principal ideal domain (PID) is an integral domain (ID) where every ideal is principal

Proposition

The ving I is a principal ideal domain

Proof :

We know that I is an ID
.

We need to show that every ideal of 2 is principal

(1) 50h[I is principal as in example (1) above

(2) Let $150) be any non-zero ideal of I . We find new such that

s =n]

Take any a t 0 ,
as =-aeS

,
hence SMIN #0.

Let n be the minimal natural number in S (n > o

n = mindses 02 es

(8) : Showing & E

Observe by property of ideals

nzeS Vze] = nIES

12) : Remain to prove n& IS. Take any wes -2. Then

n = ng + r where Or>n

=> v = u-nq ,
where wes and nqeS property of ideals

if 20 and v = u-nq n ES
,

we contradict minimality of n

=> v = 0

=> n = n2
*



Theorem

Let F be any field. Then thering
F(x]

is a principal ideal domain

Proof :

We already know that Flx) is an integral domain. Need to show every ideal of Flx] is
principal .

(1) 203-FLx] is principal

(2) Suppose I+503 is any non-zero ideal of F(x).

Let get be such that g70 and degg is minimal for all elements of I .

We will show

I = gF(x)
(2) : By definition of ideal,

gF(x] = I (gfcIVfeF(x))
(2) : Suppose fel . By division algorithm for F(x)

f =

gg + v q ,
veF(x) v= 0 our + 0

deg (v) > deg(g)

=> v = f -

gq , f , gqtI

=> VEI closure of ideal under +

deg(v) < deg(g) eI contradicts minimality of deg(a)
=> v = 0

=> f (gF(x]
=> I[gF[x]



Generators

aD = Ead : de DY

To generate a D

a = and for some weD => wd = 1

=> w is a unit



16. Divisibility of Integral Domains
Let D denote integral domain

i) D is commutative

ii) IED

iii) zD(D) = 50 ?

For example ,
D =X

,
IIF)

,
F

,
F(x)

,
Fa field.

Y

square-free

Divisibility
Definition

We say that beD divides aeD if

a = bc for some cep

denoted bla

For example if b = 0
,
then a = 0 c = 0 => b = 0 divides only a = 0

Remark : Let beU (D)
. Then VaeD, we have

a = a. 1 = a(b " b) = (ab )b
C

In particular , if D = F is a field and b 0
, then beU(F)

=> so all non-zero elements of a field divide every element

Irreducibility and Prime

Definition

i) An element aeD is irreducible if a to , a f u(D) and if for any biceD,

a = b) => b = v(p) or c V(D)

ii) An element peD is prime if PFO , pfU(D) and if for some a, beD

plab => pla or plb

iii) Elements a , beD are associates if a = bu = ub for some neU(D)

We write and



Example

D =2
,
Recall U (2) = [ +1· 13

iii) and in-(a) = (b)

ii) An element pe2 is prime - P+0 , p#1 ,
-1 and

plab > pla or plb

But plab > 1p///allb)

Then pla or plb => IpIlal or Ip///bl

so Ip) is a prime number

peI is "prime" element IPI is a prime number

i) By defn ,
ae] is irreducible if a t0 ; a +1 ,

1 and it

a = bc for some b , ce2

=> b = 11 or c =/

a = bc = (a) = 1bc) = 1b)(c) = (a) is a prime number again

For D =2
,
dirreducible elements? = [prime elements ?

(The equality does not hold in general

Non-Example
D = 2[fs) : d = -3

a = 2 irreducible
,

not prime

Proposition
Let D be any integral domain.

If peD is prime => p is irreducible

Proof :

Let peD be prime .
So po , pfV(D) by definition

suppose p= bc
.
Then p = 1 . b c => plbc

=> plb or pla



case 1 : plb = b= pd for some de D

p + O
,

D is an ID
, pAZD(D)

=> p= bc = (pd)c = p(dc) Cancellation property
=>1 = d) => c V(D)

Case 2 : p( => b + v(D)
#

So p is irreducible

Remarks/Important facts
(1) If aeD is irreducible and a = bc

,
then and or anc

(2) If peD is prime and

pla, ... an

for a , , ..., An ED ,
then

plai for some index 1SiIn

In particular VaeD

pan = pa

(3) If bla and acU(D) then a = bc so that I = b (ca") => beu (D)

Lemma

i) The relation~ is an equivalence relation on D

So D splits into a disjoint union of equivalence classes relative to r

ii) Equivalence classes of O and 1 in D are respectively 204 and UCD

Proof :

i) Reflexive : VaeD
,

a = a . 1 => and

Symmetry : Va
,
beD

,
and a = bu

,
nev(D)

=> b = an
,

n cU(D)

=> bra

Transitive : Va
,
b

,
ceD

,
and and brc=a= bu

,
b = cu

, u
,
veu(D)

=> a = c(ru)
,
nrev(D)



=> anc

ii) 0-0 (reflexive) => 0c[0)

an0 => a = Ou
,

ne V(D)

=> a = 0

=> [0) = 503

an1 => a = 1u = u
,
neu(D)

=> acu(D)

=> [1] = u(D)

veu(p)= v = yu = v z = v(p)c()) = (i) = v(x)

Example
#

D =2
,
then 2 = 503 W51

,
+ 13 WS2

,
23 W&3, -33 W ...

j

equivalence classes in 2

Remarks/Important facts : continued

(4) If bla and alb and

proof :

alb => a = bc for some CeD

bla => b = ad for some beD

Then

al = a = bc = ad

If a = 0= b = 0 => awb

If a + 0 => acN2D(D) (since D is an integral domain)

=> dc = 1 cancellation property
=> c ,

d = u(D)

=> arb
↳



(5) If P, qED are primes and pla-prq

proof :

p(q => q = q1 = pr for some veD

=> alpu
=> alp or glo since a prime

glu = v = qs for some seD

q = pr = pqs = qp) => 1 = ps by cancellation property
=> peu(D)

Hence glp and prq by (4) above *

(6) D is an integral domain ,
a ,
al, b

,
b'eD

,
and

,
bab

alb) ald'

(7) peD prime and prgq is prime

proof :

peD is prime => ptO and peU(D)

4-q= q70 , q4v(D) by Lemma page 59 (ii)

suppose glab => plab by (6)

=> pla or plb

=>qla or glb
#

(8) atD irreducible
,
awbeD= b is irreducible

proof : atD irreducible=> a +0 ,
a cu(p)

anb= b + 0
, bqu(D) by defn.

a = bu for some neU(D)

suppose b = cd for some c, deD

a = bu = (cd)u = c(du)

a irreducible=> ceU(D) or duev(D)



Case 1 : due U(D) here

d = (du)u = v(p) => d = v(p)

Hence (eU(D) or deV(d) => birreducible
*

Proposition

Let D be a principal ideal domain

peD is irreducible - p is prime

Proof :

We have already proven for any ID, p prime-> pirreducible

Now let peD be irreducible. Then p is prime.

We already have pf0, peU(D) . Suppose plbc for some b
,ED

( need to show pla or plb)

Now bc = pa for some aeD

Consider principal ideals pD ,
bDED

.
Then consider ideal

↑D + bD = [sp + + b : s ,
teD)

Sum of ideals are ideals . D is a PID= pD + bD is principal

pD + bD = dD for some deD

Then p = p1 + bO < dD

b = po + b1cdD

In particular dlp => p = dq for some qeD

p is prime -> p is irreducible

=> ceU(D) or q(V(D)
Case 1 :

q is a unit prd and alb

=> plb by remark (6)

Case 2 : & is a unit.

depD + bD => d = sp + tb for some s
,
teD



c = 1c = ddc = (sp + +b)dc = spd + + bcd" = spdc + tpad
= p(sdk + tad")

=> plc
#

Unique Factorization Theorem

Now lets have some aeD and try to factorize

a = P1
.... Pm where each pieD , prime

Theorem Unique Factorization Theorem

Let D be any integral domain
Let aeD,

a = p,
.. ..

Pm = q.... qn m ,
nEN

, Pi , qjED prime

Then men and one can rearrange .... &m so that

Pirq ; Vi =
1, ..., M

Hence a decomposition of aeD as a product of primes is essentially unique
Proof : (by induction on m) :

Base case : m = 1

Suppose then a = P1 = &1. an

P Prime => P,
irreducible

=> a = q1... En irreducible = 19. .... an ) gin
Suppose < 1

. Here

In prime => q(u(p)
Then 91

: "En-ED is a unit. And so IreD s. t

97
...... qn-

v = 1 = q = 92
:... En ,

V ...... nqiEnev

=>
911 :... En,

+ U(D) closure
, group theory

=> 91 · In ,
is prime and units

Hence n = 1
,

a
,

= pi = 92



Inductive Step : Suppose my 1 and P(m) holds for m-1 instead of m .

Let a =(1)) .... Pm) = 91
:

In where each factor Pi , 9; is prime

=> 4191 :... In and pe prime

By remark (2) , P2 divides aleast one of the factors

91
..... In ,

i . e.

P19; for some index j

By rearranging 91: In ,
assume

P1/91

By remark (5) then P2-91 #41 = &U for some nev (d)

PIP2
: :

Pm
=

P1492
: "

-

In

50410 = PLAID(D) = 50%
. By cancellation property

=>
Pm

= (nq2)9s ..... In
in

prime
prime prime

u92 prime by remark (7).

By induction assumption ,
m - 1 =-1 = m= n

By rearranging U92 , 93i" , 9m we can make them associated to P2: pm respectively

92192 P2

93"Ps

:

InPn

P2q,4 - 91
#



Remark : Let D be any integral domain and aeD be irreducible
,
not prime

Then a does NOT decompose into prime factors

Proof : (contradiction) :

Suppose a = pq , p , qeD , prime

↑ prime => peU(D) => geU(D) primes irreducible

=>
ar=> a is prime (Remarks)

/↓
*

Move Examples

1)



17. Examples of irreducible elements
Let del [17 be square free

d + 0
[Ifa) = (a + b(da

,

b +[]

is a subving of D with the identity
1 + ord

Usual + and x operations on II]

(a + b(d) + (c +era) = (a +c) + (b +e)d

(a + b(d)x(c +ea) = (ac + bed) + (ae + bc)d

Proposition
[I] is an integral domain

Proof : D = Ira]

1) D is commutative

2) D = 1 = 1 + 0i = 1 +o

3) zD(D) = zD(() = 50]

don
*

Norm

Definition

The norm on D=[] is the function

N : IIa) · N
°

= NuS03

N(a+ brd) = a - db 20

Remarks

(a) N(a + bra) = ((a+ bra)(a- bra))

(b) If >0
, then Natbid) = add 20

Y



Proposition

(i) Any zeXI) has a unique presentation

z = a + brd for some a
,
beXI]

so our definition of N is correct (well-defined

(ii) N(z) = 0 z = 0

(iii) N(zw) = N(z)N(w) Vz
,
weRIfa]

(iv) zeu(2[ra]) > N(z) = 1

Proof :

i) Let atbid = c + erd for a ,
b,see

Then (a-c) = (e -b)( => (a -c) = (e - b)d + 0 (*)
V jj

suppose eth ,
we know that d+0

,
d>0 to avoid contradiction

d > 0 and d + 1 = d > 1 + 2)

=> d has a prime factor in Iso

=> p((a - c)2
=> p((a - c)

so p occurs at LHS ( * ) even number of times and odd number of times in RHSX

Therefore e = b => a = c

ii) Let z = atbrd
. By using Remark (a) and (i) of our proposition ,

we have

N(z) = 0 => (a-db) = 0 = ((a + bra)(a - bra)) = 0

=> (a + bra)(a - brd) = 0 = a +b = 0 or a -br = 0

# a = b = 0 z =0

iii) z = a + bid
,

w = cerd
,

a
,

b
,

c
,
ee]

N(zw) = N((a + brd)(c + erd))

= N)(ac + bed) + (bc + ae)(d)

= ((ac + bed)2 - d(b + ae)



= /ac + Lacbed + bed + db2- 2bcaed-dae)

= lac + bed - db2- dael

= ((a db)(2 -del

= (a - db(x)2- de

= N(z)N(w)

iv) zeU(ZIva))
,
then zw = 1 for some weRI)

.
Then by (iii)

1 = N(1) = N(zw) = N(z)N(w)

=> N(z) = 1 and N(w) = 1
. Conversely ,

let z = a + brd with a, be 2

N(z) = 1 => (a- db) = 1 => ((a + bra)(a - bra)) = 7

=> (a + brd)(I(a - bra)) = 1
⑭

=> zeu(2(fa))

Theorem

Let de2150 , 19 be square free (can have d = 1
,
i = Fl

The units of [ra] are :

i) 1 , 1 ,
i

,
-i if d = 1

ii) 1,1 if d <-I

iii) 1
,
-1 and infinitely many others if d > I

Proof :

i) Let d = 1
. Then z = a + bi

,
a

,
bel

By (iv) above ,
zeU([[i)) => N(z) = 1

# a+ b2= 1

= (a
, b) = (1 , 0)

,
(- 1

,
0)

,
(0 , 1)

,
(01-1)

=> units are 11 and IP

ii) d > -1 :

Then z = at bid K
,
but a ,
be



By (iv) above ,
zeU([[ra)) #> N(z) = 1 > 1 = a db : 0

1 = a- db = b = 0
,
a=1 z = 1, 1

i

iii) d <
1

.

Then 1, 1e Ul][va))
.
Further z = a + brd

,
a

,
bel

zeu(IIta)) #> 1- 161 : 1

=> has solutions (a ,
b) + (11 ,

0) by Number Theory
==> z = a + bid also has z?, E, .... are distinct units

#

Constructing our Example

Consider ving &[Fs) ,
d = 3. If z = a + bFst2IFs)

z = a + bFj = N(z) = a +3b2+ 2

Now suppose

wellFs] such that N(wl = 4

Proposition

w is irreducible

Proof :

Indeed N(w) + 0
,
1 => w + 0

, wqU(XIFs))

Now suppose w =sy for some x ,ye[I)

By (iii) of our proposition

w =

xy => 4 = N(w) = N(xy)
=> 4 = NISN
=> 4 = 4 . 1 = 1 . 4=

=> N(x) =1
, N(y) = 4 or N(x) =4 . N(y) = 1

=> xU(z(fs)) or yev(XIFs))
x is a unit or y is a unit



So w is irreducible by definition

N(w) =4= w is irreducible
&

Now consider

w = 1 + F3 N(1 + Fs) = 4

w = 1 - F3 N)1 - F3) = 4

w = 2 + 05 = 2 N(2) = 4
-

all irreducible

Now
, 4 [Fs]

4 = 2x2 = (1 - Fs)(1 +F3)

Units of IIF3] are

v (2[ 1]) = 4 - 1
, 1)

Thus

241 +F3 and 24 1 + F3

Does NOT contradict factorization theorem since ItF3
,

1-E3
,
2 are NOT prime

proof : (by contradiction

Suppose (1 + F5) is prime.

(l +Fs)4 = 2x2 = (1 +F3) 2 defa of prime

=> 2 = (l +Fs)z for some zeIIFs]

=> 4 = N(2) = N(1+Fs)N(z)

=> 4 = 4N(z)

=> N(z) = 1

=> zeu (fs) = [1
,
17 = z = 1, 1

=> z a unit
similar for other elements e



18. Unique Factorisation Domains
Definition

Let D be
any integral domain

Dis called a unique factorization domain UFD if

i) VacD1d0h with afU(D) ,
then

a = P1Pz
....

Pm ,
meI and p. irreducible Vi = 1

....., m in D

ii) such a decomposition of a is essentially unique ,
that is if

a =

P1Pc ... Pm = 1192
:· In

where all pi ,
i = 1

, ..., m and all qj with j = 1
, ... n are irreducible in D

, then men .

We can then relabel the qj so that

Pi-9 ; for each i =
1, ..., m

Remark : If all irreducibles in D are prime ,
then (ii) holds by unique factorization theorem

Example

(1) Ring I is a UFD
.

Indeed I is an integral domain with

v(z) = [1
,
-74

Irreducibles in I are prime numbers in the sense of Number Theory and also their negatives .

Every ze* 10
,
1

,
-17 can be written as product of these => (i) holds

All irreducibles in2 are prime by ring theory > (ii) holds

(2) Ring &IFs) is NOT a UFD because (ii) fails

4 = 2x2 = (1 + F3)(1 - Fs)

Y y
irreducible

,
not associated



Proposition

Let D be a UFD and PED

pirreducible #) p is prime

Proof :

We know if D is any integral domain ,
then

pprime => pirreducible

we letD be a UFD and peD be any irreducible elements
.

we let D be a UFD and peD be any irreducible elements
.

Need to prove p is prime

pirreducible => p + 0
, peV(D) and

p = ab = ac U(p) or beu(D)

Need to prove if plab => pla or plb

suppose plab

plab => pc = ab for some ceD

+
suppose a

,
b + 0. Then ab +0 (if ab = 0

,
ac2DDh =50 a + 0)

HenceC+ 0
.

If acU(D) => plb by remark (6)

If beU(D) => pla by remark (6)

Let a , b4U(D).

claim : a
, bu(p) => cku(p)

proof :

if ceU(D) . Then prab ,
where a , bU(D) ,

a
,

b + 0

By remark 8 ; ab is irreducible as an associate of P X ⑭

Now let us apply UFD conditions to a and b



a = P1
...

Pm and b =q1
: qn

where all p,
with i =

1, ....
m and 9j with j = 1 ... n are irreducible in D

.
Then

pc = ab = PIP2: Pm&1 : an

is a factorization of pc as a factorization of mtn irreducible elements.

But alsoc factorizes into a product of irreducible elements. Due to (ii)
,

must have exactly men-t

irreducible factors while

prp ; for some iedt ....., my or peg; for some jedt ,.,n
↓ ↓
pla Of plb

=>
p prime by definition *

Theorem

Let D be a principal ideal domain.

D is a PID X D is a unique factorization domain

Proof :

We know D is a PID
.
Then

pprime #) pirreducible.

By unique factorization theorem , any decomposition into a product of primes is essentially unique .

so part (ii) of defn of UFD is okay
i) proof by contradiction

suppose a is not a product of irreducibles

In particular a is not a product of irreducibles. So

a = a + bz acD [02
, a , beU(D)

at and by cannot be as a product of irreducibles

suppose at is not a product of irreducibles (w
. l . 0 . g)

a
1

= azb2a2 ,
b2 + 0

, az ,
batu(D)

Y
not product of irreducibles



continuing ,
we get as , by . . . . , a = Gitbit, each at is not a product of irreducibles

Consider [i = aiD.

Since a = ai +bit1> aitaitD .
Hence we have

aD = a
,
D ...

Let
I=W

I a PID
. In particular , we have

c cD = I = Vai

CecD= Ene[1, ...., 1 st CeanD
. Then

In = anDEl = cD - anD

=> I = anD

an +11 = an+ fanD => an+= and for some beD
.

Hence

an = an+ 1bn+ 1
= anbbn+ 1 ,

ant0EN2D

=> 1 = bbn + 1

=> bn + 1
< U(D) a unit

A contradiction. Hence a is a product of irreducibles.
*



19. Prime Ideals
Definition Proper Ideals

Let R be
any ring

An ideal of R is proper if IFR

Prime Ideals

Definition Prime Ideals

Let R be
any ring

An ideal P of a ving is prime if

i) P is proper

ii) Va ,
b e R

ab-P => acP or beP

Examples of prime ideals

(1) If RESO) but ED(R) = 503
,
then 201 is prime

(i)

(ii) ab = 0 => a = 0 or b = 0

(2) R =& and I be a non-zero ideal of I

Any ideal of I has form I = n2 for some neI" = NUSOY

I is prime n is prime

proof :

· n = 0 => I = 02 = 201 and we know ID(2) = 203. So

n = 0 => I is prime

· neI
,

n2 ]
,

n not prime. Then

n = ab 1(a
, b)n

Then n = n . 1 en] => na
, n + b => adI = n2 and bl = n]



· new be prime ,
n = p > 1

Consider I = p2 , p prime. pick any cep2. Now

c = pz for some zel

For any a
,
be 2)

abcl => plab => pla or plb
=> atI or bel

.

Properties of Prime Ideals

(P1) Theorem

Let P be any proper ideal of R

↑ is prime E-2D(R/p) = 50

Proof :

#) : Suppose P is prime.

Suppose (a+ p)(b +P) = 0 + P = ab + P = 0 + P

=> abeP

=> aeP or beP P prime

=> a + P= 0 + P or b + p = 0 + P

(E) :

Suppose 2D(R/p) = [02
· Suppose abEP

(a + 4)(b+4) = (ab + p) = 0 +p => a + p = 0 + 4 =

I b + p = 0 + 4 = ) prime ideal

(P2) Corollary
Let R be any commutative ving with 1ER

ideal P of R is prime >R is an ID/P

Proof :

1) R commutative #) axb = bxa

# (ab + 4) = (ba + 4)



# R/p commutative

2)2D(R/p) = 207 by above

3) Showing that I+P is the identity
(1 + 4)(a+ 4) = 1a + p = a + P

If I I = 01 > LI

=> P =R (P is properl
(P3) Proposition

Let D be an ID. Then VaeD

(i) aD = 503 a = 0

(ii) aD = D =S acU(p)

(iii) aD is a non-zero prime ideals of D EX a is prime

Proof :

i) (E) : a = 0 => aD = 204

# : contrapositive :

a + 0 = a = a . 1aD since IED

=> aD + 50]

ii)() : Suppose aD = D => x = ad for xeD = aD

In particular 1 = ad for somed
-> a is a unit

=> acV(D)

(E) : Suppose a U(p)

(2) : xeaD => x = ad for some deD

=>xeD by closure on ideals

(8) : Suppose de D

d =1 . d =

alad)a



iii) By (i) ,
a +0 , by ii) a qU(D) #> aD D (proper

aD is prime > bceaD => beaD or ceaD

#> bread => b = ap or c =

aq

# albo => alb or ala

# a prime ⑭



20. Maximal Ideals
Let R be any ving

Maximal Ideals

Definition Maximal Ideals

An ideal M of R is maximal if

(i) M is proper ,
MFR

(ii) For any ideal IER

MEIER => I = M or I= R

Properties of Maximal Ideals

(M1) Theorem

Let R be
any commutative ving with 1eR. Let M be any ideal of R

. Then

M maximal ES R/M is a field

(M2) Corollary
Let D be a PlD and If90] be a non-zero ideal. Then

I is maximal Ef I is prime

(M3) Proposition

Let D be any ID . Then VaeD So]

i) If the ideal aD of D is maximal , then a is irreducible

ii) If D is a PlD and a irreducible
,
then aDED is maximal

(M4) Corollary
Let R be any commutative ring with an identity 1 andP be any ideal of R

P maximal => P is prime



Example

Consider [Ix]. Then

i) [[x] is a UFD

ii) [[x] is not a PID

proof :

(ii) Let I = 2&[x]

j= x[[x]

ItJ < ](x] is an ideal

claim: ItJ is not principal ,

i

. e.

I + 5 + +[(x) - fixed polynomials [(x)

Suppose I + j = + &(x)

17 2 . 1 => 2 . 1 = 2 = 2 . 1 + x .0 I + j = + 2

0 + 2 = fg for some ge[(x)
deg(2) = 0 = deg(t) + deg(g) => f is constant

, + + 0

Yj

x = x . 1 tj - [+ j = f[(x) = 1x = th for some ne[(x)

=> f = 11 since f is constant

=> z = (11) (= 1) = + ](x]

I
=> I+ j = [[x]51

=>1 = 2u +x*
odd "

has even constant term

Hence Its not principal
#



claim: I + J is maximal
.

Take any polynomial fe2R +R f = 200 + a
,
x + ...

=> + is polynomials of even constant terms

If It JSK is any bigger ideal ,
it contains odd constant term polynomial , say

2k - 1 + a , x + .....

By closure of ideals

(2k + a , x + .... ) - (2k - 1 + a ,
x + ... ) = 1 + k = k = 2)(x]

↑

1 + j



21. Irreducible Polynomials 
Let F be any field such as

Eg : F = R
,
C

,
F = 1/p2 p prime

We know R = F(x) is a PIDER is an integral domain

Every ideal I of R has form I = fR , feR = F(x)

Corollary
For
any polynomials feF(x)

t is prime -+ is irreducible

i. e.

Call primes in F]) = dirreducible in F(x)]

Note :

f is constant > + = 0 or feU(F(x))
↓ H

no degree deg(f) = 0

Irreducible Polynomials

Definition

Take feF(x] which is irreducible when

i) + + 0

&ii)+ U(F(x)) E) +FaeF constant polynomial
constant

iii) f =gh for some f =gh for g ,
heF(x)

,
then one of the factors are constant

i . e. += gh = + org is a non-zero constant

If does not factorise into non-constant terms)



Lemma

Let feF(x) and degf = 1.
. Then

- is irreducible

Proof :

Take feF(x] of degf = 1
. Then

+ = ax + b
,

a + 0
,
beF = ff constant

suppose f = ax + b = gh = deg(gh) = deg(g) deg (n) = 1

Either deg(g) = 1
, deg(h) = 0 + h non-zero const

deg(g) = 0
, deg (n) :I

non-zero const

=> + is irreducible
*

Lemma

Let feF(x] such that degf = 2 or 3

Then + is irreducibleI has no root in F

(f (a) + 0 VaeF)

Proof : both
ways contrapositive

# : Suppose f has a root .
We will show t is not irreducible.

A acF s .tf(a) = 0
.
Let us divide by (x-a) with a remainder

+ = (x- alg + ~ where v = 0 or 0 but deg(v)<I
W

zeroconst non-zero const

-

0 = f(a) = 0q + v = v= 0 v is a const

2
,

3 = degt = degka) + degg = 1
,2/ tis not irreducible

(E) : Suppose+ is not irreducible. Need to prove + has a root

So f = uv
,

u
,
v are non-constant polynomials

2
,
3 = deg(t) = deg(u) + deg(v) = deglul = 1 or degl-



suppose degu= 1 => n = co+d
,
where c + 0= F

f = (xx +d)v = c(x + id) => x = i'd
,
then x is a root

Similar for deg v = 1
⑭

①Consider the principal ideal I= fF(x]

Then by (M1)

I is prime maximal by (1)

② Now consider quotient ving :

FixI where I= fF(x]

By (M3) F(x] Id
It

is a fie

classification Theorem

Theorem

Let G be any finite field.

(i) The multiplicative group v(G) = G 203 is cyclic
(ii) All finite fields G with the same number of elements IGI are isomorphic as rings
(iii) The number IG) = ph for some prime p ,

new

(iv) For any prime p ,
there exists an irreducible polynomial fe2/pRIs) of degree n

such that the field

(2/p2)[x)/I has size p" and I = + (2/p2)[x]

Proposition
Let feF[x] be irreducible. Put I = fF(x]

. Then

F(x]/I is a field.

Moreover
,
the map

O : F (F(x]/I
a 1> A+ I

is a one-to-one homomorphism ,
F = IMO D/I



Proof :

By the proposition (M3) ,
I = fF(x] of FEc] is maximal . Then by theorem (M1),

F(x)/ is a field

homomorphism: Proved in Factor Rings chapter

one-to-one : Take any a
,
beF such that O(al = O(b)

0(a) = O(b) #> a + 1 = b + I

E a - be l = f F(x]

= a - b = fg

If a- b + 0

0 = degla-b) = deg(tg) = degf + degg > 0
x

since f not constant

#S a = b
*

In particular ,
0 : 2/p2)

-> (2/p2)[]/+(2/p2)(x)

4/7 ImO = 2/p2

Example

Suppose that f = cx + & where c,deF and c + 0.

Then+ is irreducible by Lemma pg80 and by proposition pg 81 ,
the factor ving

F(x)/+ F(x]
is a field.

claim: F(x)/fF() = F

Already shown for I = fF(x)
,
the map

0 : F- F(x)/ : a 1, a + I
-

is one-to-one homomorphism.

Onto : By division algorithm for FIGS ,
neF(o) can be written as

u = (cx + d)q + v



where the remainder veF is constant

(cx + d(q + I => n + 1 = V + I

Theorem

Let neI and F be any field

Let feF(x] be an irreducible polynomial of degreen , deg(t) = n .

Put I = f F(x)

i) Then the ring

F(x]/+ F(x] is a vector space

over the field F of dimension n under the operation
(n+ 1) + (v + 1) = (u+ v) + I

ax(n + 1) = an + I

Vu
,
veF(x] and acF

ii) The vector space Fla]/ I has a basis

ItI
,

x +I, ..., c+I (*)

Proof (D = F(x)
,
l = fF(x])

(i) Let us make our set D/ a vector space over F

Vector space structure

VacF
,
VuiveD (n + 1) + (v + 1) = (n +v) + I

a(u + 1) = au + I

Rings axioms vector space axioms

(ii) Take any ueFlx] and divide f with a remainder s

u = fq + where geF[x] and either v = 0 or v = 0 or 10

deg(v) < degf = n

-

P/I7u + I = ①q+ V + I = V +I
,

never is a linear combination (with coefficients from F)
of 1

,
x

, 2, ..., xh-

I= fD



=> (*) a spanning set D/I
v = do + a

,
x + ... t an,

Sch
, do . 91 , 92 , An, EF

Since U +I = r + I
,

F(x)/I = ((a0 + a
,
x + .. . + an .,

x

*

) + I : a ; + F)

= (ao(l + 1) + a
,
(x + 1) + ... + an -,

(x" + 1) : aie F)

=> I +I
,

x + I, . . .,
x" + I span F(x]/I .

Finally need to prove that (*) is linearly independent in P/I

Suppose

ao(1 +1) + a
,
(x +1) + ... - + an -,

(x"+ 1) = 0 + I

=> (901 +1) + (aqx +1) + -. + (an-
"

+ 1) = 0 +I

=> lao + a,x +... + an -,
x") + I = I

=> lao + a,x +... + an -,
x") =l = f F(x)

Hence

~tapt
... +an ,
c = +g for some geF[x]

suppose this isFo

n > deglad t ... +Any) =

degt
+

deggn, e↓

=> do + a
,
x + .... tan-,

x = O

=> do = a
,

= az = . .. = an-1 = 0

=> (*) is linearly independent *



22. Examples of Irreducible Polynomials 
Let F be a field and feFlc] be irreducible. Consider the field

F(x]/I
,
l = + F(x)

Let X = c + I
· Then for any g = bot be t ... bmsF(x]

,
its coset in F(x)/ I equals

g(x) = b + b
,
(x + 1) + ... + bm(x + 1)

Examples
(1) F = R and felR(x]

+ = x + 1 irreducible > f(a) 0 VaeR

(Lemma 2)

New field R(x)/(2+ 1) RIx]

1 + I
,

s + I = X is a basis

Any element of our new field is

a(1 +1) + b(x + 1) = a(1 + 1) + bX

New field contains IR as a subving
(a(1 + 1) = ac [acRY

Further

x = (x +1) = x+1 = (x+ 1) - 1 + 1 = 1 + I

=> X= -1 in new field

We can define a ving isomorphism

"New field", I

a(1 + 1) + bX1c a + bi



(2) F = Q ; + = - 2 irreducibles fla) 0 VatiQ

Considera-2 = 0 #) a =3Q
.

So irreducible in Q(x)

New field Q()/Q[] has basis over Q of I +I ,
x + I

,
c + I

"y "2

Suppose X
, YeQ(x]/Q[] ,

a , beQ

Our addition and multiplication are Q linear

(ay+ b2) + (ay'+ bz) = ay + ay' + bz + bz XYZ,

e new fil

(ay + bz)(ay'+ b'z) = ad y y + abyz + bazy' + ady'z

Therefore enough to compute addition and multiplication for basis cosets

2

+ yz =XX Xyz 1XX
12 x +11 + X 1 1 XX

XX + 12xX+ x2 X X X2 2

2 2

X x+ 1x2 + x2x2 X X 22x

XxX2= X = (x + 1) = x + 1 = (x 2) + 2 + I = 2 + I

xxx= x = xxX = 2x

(2) F = 2/22 = ((0)
,
[2)]

calculating irreducible polynomials in F(x)

Take any teFlx] of degree 2

+ = []x + ax + b1

+ is irreducible => b + 10) => b = [1) (b = (0) => f (0) = [0])

Hence

f = (1) + ax + (1) = 1) + = (i) + (1)

2) + = (1)c + (1)x + 1)

1) + (()) = (i) + (1) = 10)

2)Hol = irreducible by Lemand



The field F(x)/I has 2= 4 elements. They are

[0) + I
,
(1) + I

,
x +I

,
((z] + x) + I

New notation :

10] + 1 = 10)

[ 1) + I = I

x + I = X

All elements take form

aX + b

Drawing tables

t O 1 X X + 1 X O 1 X X + 1

O O 1 X X + 1 O 00 0 O

11 j X + 1 X 10 1 X X + 1

XXX+ j 1 X 0 X X+ 1 I

X + 1 X +1X1 j X +10X+11X

X = c +I = x + x +(1) - (x - [)) + I = -

x - [] + I = x + 4) + I


